6,673 research outputs found

    Smart container monitoring using custom-made WSN technology : from business case to prototype

    Get PDF
    This paper reports on the development of a prototype solution for tracking and monitoring shipping containers. Deploying wireless sensor networks (WSNs) in an operational environment remains a challenging task. We strongly believe that standardized methodologies and tools could enhance future WSN deployments and enable rapid prototype development. Therefore, we choose to use a step-by-step approach where each step gives us more insight in the problem at hand while shielding some of the complexity of the final solution. We observed that environment emulation is of the utmost importance, especially for harsh wireless conditions inside a container stacking. This lead us to extend our test lab with wireless link emulation capabilities. It is also essential to assess feasibility of concepts and design choices after every stage during prototype development. This enabled us to create innovative WSN solutions, including a multi-MAC framework and a robust gateway selection algorithm

    A Resistive Wideband Space Beam Splitter

    Full text link
    We present the design, construction and measurements of the electromagnetic performance of a wideband space beam splitter. The beam splitter is designed to power divide the incident radiation into reflected and transmitted components for interferometer measurement of spectral features in the mean cosmic radio background. Analysis of a 2-element interferometer configuration with a vertical beam splitter between a pair of antennas leads to the requirement that the beam splitter be a resistive sheet with sheet resistance {\eta}o /2, where {\eta}o is the impedance of free space. The transmission and reflection properties of such a sheet is computed for normal and oblique incidences and for orthogonal polarizations of the incident electric field. We have constructed such an electromagnetic beam splitter as a square soldered grid of resistors of value 180 Ohms (approximately {\eta}o /2) and a grid size of 0.1 m, and present measurements of the reflection and transmission coefficients over a wide frequency range between 50 and 250 MHz in which the wavelength well exceeds the mesh size. Our measurements of the coefficients for voltage transmission and reflection agree to within 5% with physical optics modeling of the wave propagation, which takes into account edge diffraction.Comment: 14 pages,17 figure

    All-sky signals from recombination to reionization with the SKA

    Full text link
    Cosmic evolution in the hydrogen content of the Universe through recombination and up to the end of reionization is expected to be revealed as subtle spectral features in the uniform extragalactic cosmic radio background. The redshift evolution in the excitation temperature of the 21-cm spin flip transition of neutral hydrogen appears as redshifted emission and absorption against the cosmic microwave background. The precise signature of the spectral trace from cosmic dawn and the epoch of reionization are dependent on the spectral radiance, abundance and distribution of the first bound systems of stars and early galaxies, which govern the evolution in the spin-flip level populations. Redshifted 21 cm from these epochs when the spin temperature deviates from the temperature of the ambient relic cosmic microwave background results in an all-sky spectral structure in the 40-200 MHz range, almost wholly within the band of SKA-Low. Another spectral structure from gas evolution is redshifted recombination lines from epoch of recombination of hydrogen and helium; the weak all-sky spectral structure arising from this event is best detected at the upper end of the 350-3050 MHz band of SKA-mid. Total power spectra of SKA interferometer elements form the measurement set for these faint signals from recombination and reionization; the inter-element interferometer visibilities form a calibration set. The challenge is in precision polarimetric calibration of the element spectral response and solving for additives and unwanted confusing leakages of sky angular structure modes into spectral modes. Herein we discuss observing methods and design requirements that make possible these all-sky SKA measurements of the cosmic evolution of hydrogen.Comment: Accepted for publication in the SKA Science Book 'Advancing Astrophysics with the Square Kilometre Array', to appear in 201

    Calibration of the EDGES High-Band Receiver to Observe the Global 21-cm Signature from the Epoch of Reionization

    Get PDF
    The EDGES High-Band experiment aims to detect the sky-average brightness temperature of the 2121-cm signal from the Epoch of Reionization (EoR) in the redshift range 14.8≳z≳6.514.8 \gtrsim z \gtrsim 6.5. To probe this redshifted signal, EDGES High-Band conducts single-antenna measurements in the frequency range 90−19090-190 MHz from the Murchison Radio-astronomy Observatory in Western Australia. In this paper, we describe the current strategy for calibration of the EDGES High-Band receiver and report calibration results for the instrument used in the 2015−20162015-2016 observational campaign. We propagate uncertainties in the receiver calibration measurements to the antenna temperature using a Monte Carlo approach. We define a performance objective of 11~mK residual RMS after modeling foreground subtraction from a fiducial temperature spectrum using a five-term polynomial. Most of the calibration uncertainties yield residuals of 11~mK or less at 95%95\% confidence. However, current uncertainties in the antenna and receiver reflection coefficients can lead to residuals of up to 2020 mK even in low-foreground sky regions. These dominant residuals could be reduced by 1) improving the accuracy in reflection measurements, especially their phase 2) improving the impedance match at the antenna-receiver interface, and 3) decreasing the changes with frequency of the antenna reflection phase.Comment: Updated to match version accepted by Ap

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    SARAS: a precision system for measurement of the Cosmic Radio Background and signatures from the Epoch of Reionization

    Full text link
    SARAS is a correlation spectrometer purpose designed for precision measurements of the cosmic radio background and faint features in the sky spectrum at long wavelengths that arise from redshifted 21-cm from gas in the reionization epoch. SARAS operates in the octave band 87.5-175 MHz. We present herein the system design arguing for a complex correlation spectrometer concept. The SARAS design concept provides a differential measurement between the antenna temperature and that of an internal reference termination, with measurements in switched system states allowing for cancellation of additive contaminants from a large part of the signal flow path including the digital spectrometer. A switched noise injection scheme provides absolute spectral calibration. Additionally, we argue for an electrically small frequency-independent antenna over an absorber ground. Various critical design features that aid in avoidance of systematics and in providing calibration products for the parametrization of other unavoidable systematics are described and the rationale discussed. The signal flow and processing is analyzed and the response to noise temperatures of the antenna, reference termination and amplifiers is computed. Multi-path propagation arising from internal reflections are considered in the analysis, which includes a harmonic series of internal reflections. We opine that the SARAS design concept is advantageous for precision measurement of the absolute cosmic radio background spectrum; therefore, the design features and analysis methods presented here are expected to serve as a basis for implementations tailored to measurements of a multiplicity of features in the background sky at long wavelengths, which may arise from events in the dark ages and subsequent reionization era.Comment: 49 pages, 17 figure
    • 

    corecore