4 research outputs found

    ν›ˆλ ¨ 자료 μžλ™ μΆ”μΆœ μ•Œκ³ λ¦¬μ¦˜κ³Ό 기계 ν•™μŠ΅μ„ ν†΅ν•œ SAR μ˜μƒ 기반의 μ„ λ°• 탐지

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (석사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μžμ—°κ³Όν•™λŒ€ν•™ μ§€κ΅¬ν™˜κ²½κ³Όν•™λΆ€, 2021. 2. 김덕진.Detection and surveillance of vessels are regarded as a crucial application of SAR for their contribution to the preservation of marine resources and the assurance on maritime safety. Introduction of machine learning to vessel detection significantly enhanced the performance and efficiency of the detection, but a substantial majority of studies focused on modifying the object detector algorithm. As the fundamental enhancement of the detection performance would be nearly impossible without accurate training data of vessels, this study implemented AIS information containing real-time information of vessel’s movement in order to propose a robust algorithm which acquires the training data of vessels in an automated manner. As AIS information was irregularly and discretely obtained, the exact target interpolation time for each vessel was precisely determined, followed by the implementation of Kalman filter, which mitigates the measurement error of AIS sensor. In addition, as the velocity of each vessel renders an imprint inside the SAR image named as Doppler frequency shift, it was calibrated by restoring the elliptic satellite orbit from the satellite state vector and estimating the distance between the satellite and the target vessel. From the calibrated position of the AIS sensor inside the corresponding SAR image, training data was directly obtained via internal allocation of the AIS sensor in each vessel. For fishing boats, separate information system named as VPASS was applied for the identical procedure of training data retrieval. Training data of vessels obtained via the automated training data procurement algorithm was evaluated by a conventional object detector, for three detection evaluating parameters: precision, recall and F1 score. All three evaluation parameters from the proposed training data acquisition significantly exceeded that from the manual acquisition. The major difference between two training datasets was demonstrated in the inshore regions and in the vicinity of strong scattering vessels in which land artifacts, ships and the ghost signals derived from them were indiscernible by visual inspection. This study additionally introduced a possibility of resolving the unclassified usage of each vessel by comparing AIS information with the accurate vessel detection results.μ „μ²œν›„ 지ꡬ κ΄€μΈ‘ μœ„μ„±μΈ SARλ₯Ό ν†΅ν•œ μ„ λ°• νƒμ§€λŠ” ν•΄μ–‘ μžμ›μ˜ 확보와 해상 μ•ˆμ „ 보μž₯에 맀우 μ€‘μš”ν•œ 역할을 ν•œλ‹€. 기계 ν•™μŠ΅ κΈ°λ²•μ˜ λ„μž…μœΌλ‘œ 인해 선박을 λΉ„λ‘―ν•œ 사물 νƒμ§€μ˜ 정확도 및 νš¨μœ¨μ„±μ΄ ν–₯μƒλ˜μ—ˆμœΌλ‚˜, 이와 κ΄€λ ¨λœ λ‹€μˆ˜μ˜ μ—°κ΅¬λŠ” 탐지 μ•Œκ³ λ¦¬μ¦˜μ˜ κ°œλŸ‰μ— μ§‘μ€‘λ˜μ—ˆλ‹€. κ·ΈλŸ¬λ‚˜, 탐지 μ •ν™•λ„μ˜ 근본적인 ν–₯상은 μ •λ°€ν•˜κ²Œ μ·¨λ“λœ λŒ€λŸ‰μ˜ ν›ˆλ ¨μžλ£Œ μ—†μ΄λŠ” λΆˆκ°€λŠ₯ν•˜κΈ°μ—, λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ„ λ°•μ˜ μ‹€μ‹œκ°„ μœ„μΉ˜, 속도 정보인 AIS 자료λ₯Ό μ΄μš©ν•˜μ—¬ 인곡 지λŠ₯ 기반의 μ„ λ°• 탐지 μ•Œκ³ λ¦¬μ¦˜μ— μ‚¬μš©λ  ν›ˆλ ¨μžλ£Œλ₯Ό μžλ™μ μœΌλ‘œ μ·¨λ“ν•˜λŠ” μ•Œκ³ λ¦¬μ¦˜μ„ μ œμ•ˆν•˜μ˜€λ‹€. 이λ₯Ό μœ„ν•΄ 이산적인 AIS 자료λ₯Ό SAR μ˜μƒμ˜ μ·¨λ“μ‹œκ°μ— λ§žμΆ”μ–΄ μ •ν™•ν•˜κ²Œ λ³΄κ°„ν•˜κ³ , AIS μ„Όμ„œ μžμ²΄κ°€ κ°€μ§€λŠ” 였차λ₯Ό μ΅œμ†Œν™”ν•˜μ˜€λ‹€. λ˜ν•œ, μ΄λ™ν•˜λŠ” μ‚°λž€μ²΄μ˜ μ‹œμ„  μ†λ„λ‘œ 인해 λ°œμƒν•˜λŠ” λ„ν”ŒλŸ¬ 편이 효과λ₯Ό λ³΄μ •ν•˜κΈ° μœ„ν•΄ SAR μœ„μ„±μ˜ μƒνƒœ 벑터λ₯Ό μ΄μš©ν•˜μ—¬ μœ„μ„±κ³Ό μ‚°λž€μ²΄ μ‚¬μ΄μ˜ 거리λ₯Ό μ •λ°€ν•˜κ²Œ κ³„μ‚°ν•˜μ˜€λ‹€. μ΄λ ‡κ²Œ κ³„μ‚°λœ AIS μ„Όμ„œμ˜ μ˜μƒ λ‚΄μ˜ μœ„μΉ˜λ‘œλΆ€ν„° μ„ λ°• λ‚΄ AIS μ„Όμ„œμ˜ 배치λ₯Ό κ³ λ €ν•˜μ—¬ μ„ λ°• 탐지 μ•Œκ³ λ¦¬μ¦˜μ˜ ν›ˆλ ¨μžλ£Œ ν˜•μ‹μ— λ§žμΆ”μ–΄ ν›ˆλ ¨μžλ£Œλ₯Ό μ·¨λ“ν•˜κ³ , 어선에 λŒ€ν•œ μœ„μΉ˜, 속도 정보인 VPASS 자료 μ—­μ‹œ μœ μ‚¬ν•œ λ°©λ²•μœΌλ‘œ κ°€κ³΅ν•˜μ—¬ ν›ˆλ ¨μžλ£Œλ₯Ό μ·¨λ“ν•˜μ˜€λ‹€. AIS μžλ£Œλ‘œλΆ€ν„° μ·¨λ“ν•œ ν›ˆλ ¨μžλ£ŒλŠ” κΈ°μ‘΄ λ°©λ²•λŒ€λ‘œ μˆ˜λ™ μ·¨λ“ν•œ ν›ˆλ ¨μžλ£Œμ™€ ν•¨κ»˜ 인곡 지λŠ₯ 기반 사물 탐지 μ•Œκ³ λ¦¬μ¦˜μ„ 톡해 정확도λ₯Ό ν‰κ°€ν•˜μ˜€λ‹€. κ·Έ κ²°κ³Ό, μ œμ‹œλœ μ•Œκ³ λ¦¬μ¦˜μœΌλ‘œ μ·¨λ“ν•œ ν›ˆλ ¨ μžλ£ŒλŠ” μˆ˜λ™ μ·¨λ“ν•œ ν›ˆλ ¨ 자료 λŒ€λΉ„ 더 높은 탐지 정확도λ₯Ό λ³΄μ˜€μœΌλ©°, μ΄λŠ” 기쑴의 사물 탐지 μ•Œκ³ λ¦¬μ¦˜μ˜ 평가 μ§€ν‘œμΈ 정밀도, μž¬ν˜„μœ¨κ³Ό F1 scoreλ₯Ό 톡해 μ§„ν–‰λ˜μ—ˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œ μ œμ•ˆν•œ ν›ˆλ ¨μžλ£Œ μžλ™ 취득 κΈ°λ²•μœΌλ‘œ 얻은 선박에 λŒ€ν•œ ν›ˆλ ¨μžλ£ŒλŠ” 특히 기쑴의 μ„ λ°• 탐지 κΈ°λ²•μœΌλ‘œλŠ” 뢄별이 μ–΄λ €μ› λ˜ ν•­λ§Œμ— μΈμ ‘ν•œ μ„ λ°•κ³Ό μ‚°λž€μ²΄ μ£Όλ³€μ˜ μ‹ ν˜Έμ— λŒ€ν•œ μ •ν™•ν•œ 뢄별 κ²°κ³Όλ₯Ό λ³΄μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” 이와 ν•¨κ»˜, μ„ λ°• 탐지 결과와 ν•΄λ‹Ή 지역에 λŒ€ν•œ AIS 및 VPASS 자료λ₯Ό μ΄μš©ν•˜μ—¬ μ„ λ°•μ˜ 미식별성을 νŒμ •ν•  수 μžˆλŠ” κ°€λŠ₯μ„± λ˜ν•œ μ œμ‹œν•˜μ˜€λ‹€.Chapter 1. Introduction - 1 - 1.1 Research Background - 1 - 1.2 Research Objective - 8 - Chapter 2. Data Acquisition - 10 - 2.1 Acquisition of SAR Image Data - 10 - 2.2 Acquisition of AIS and VPASS Information - 20 - Chapter 3. Methodology on Training Data Procurement - 26 - 3.1 Interpolation of Discrete AIS Data - 29 - 3.1.1 Estimation of Target Interpolation Time for Vessels - 29 - 3.1.2 Application of Kalman Filter to AIS Data - 34 - 3.2 Doppler Frequency Shift Correction - 40 - 3.2.1 Theoretical Basis of Doppler Frequency Shift - 40 - 3.2.2 Mitigation of Doppler Frequency Shift - 48 - 3.3 Retrieval of Training Data of Vessels - 53 - 3.4 Algorithm on Vessel Training Data Acquisition from VPASS Information - 61 - Chapter 4. Methodology on Object Detection Architecture - 66 - Chapter 5. Results - 74 - 5.1 Assessment on Training Data - 74 - 5.2 Assessment on AIS-based Ship Detection - 79 - 5.3 Assessment on VPASS-based Fishing Boat Detection - 91 - Chapter 6. Discussions - 110 - 6.1 Discussion on AIS-Based Ship Detection - 110 - 6.2 Application on Determining Unclassified Vessels - 116 - Chapter 7. Conclusion - 125 - κ΅­λ¬Έ μš”μ•½λ¬Έ - 128 - Bibliography - 130 -Maste
    corecore