21,967 research outputs found

    Object Perception for Intelligent Vehicle Applications: A Multi-Sensor Fusion Approach

    Get PDF
    International audienceThe paper addresses the problem of object perception for intelligent vehicle applications with main tasks of detection, tracking and classification of obstacles where multiple sensors (i.e.: lidar, camera and radar) are used. New algorithms for raw sensor data processing and sensor data fusion are introduced making the most information from all sensors in order to provide a more reliable and accurate information about objects in the vehicle environment. The proposed object perception module is implemented and tested on a demonstrator car in real-life traffics and evaluation results are presented

    24 GHz radar sensors for automotive applications, Journal of Telecommunications and Information Technology, 2001, nr 4

    Get PDF
    Automotive radar systems using integrated 24 GHz radar sensor techniques are currently under development. This paper describes a radar network consisting of four sensors distributed behind the front bumper of an experimental car. Each single sensor measures the target range with high accuracy. A multilateration technique is used in the radar network for precise azimuth angle estimation even in multiple-target situations. The system performance is shown in real traffic situations for parking aid, stop & go and blind spot applications

    Observability analysis and optimal sensor placement in stereo radar odometry

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Localization is the key perceptual process closing the loop of autonomous navigation, allowing self-driving vehicles to operate in a deliberate way. To ensure robust localization, autonomous vehicles have to implement redundant estimation processes, ideally independent in terms of the underlying physics behind sensing principles. This paper presents a stereo radar odometry system, which can be used as such a redundant system, complementary to other odometry estimation processes, providing robustness for long-term operability. The presented work is novel with respect to previously published methods in that it contains: (i) a detailed formulation of the Doppler error and its associated uncertainty; (ii) an observability analysis that gives the minimal conditions to infer a 2D twist from radar readings; and (iii) a numerical analysis for optimal vehicle sensor placement. Experimental results are also detailed that validate the theoretical insights.Peer ReviewedPostprint (author's final draft

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Automated Ground Truth Estimation For Automotive Radar Tracking Applications With Portable GNSS And IMU Devices

    Full text link
    Baseline generation for tracking applications is a difficult task when working with real world radar data. Data sparsity usually only allows an indirect way of estimating the original tracks as most objects' centers are not represented in the data. This article proposes an automated way of acquiring reference trajectories by using a highly accurate hand-held global navigation satellite system (GNSS). An embedded inertial measurement unit (IMU) is used for estimating orientation and motion behavior. This article contains two major contributions. A method for associating radar data to vulnerable road user (VRU) tracks is described. It is evaluated how accurate the system performs under different GNSS reception conditions and how carrying a reference system alters radar measurements. Second, the system is used to track pedestrians and cyclists over many measurement cycles in order to generate object centered occupancy grid maps. The reference system allows to much more precisely generate real world radar data distributions of VRUs than compared to conventional methods. Hereby, an important step towards radar-based VRU tracking is accomplished.Comment: 10 pages, 9 figures, accepted paper for 2019 20th International Radar Symposium (IRS), Ulm, Germany, June 2019. arXiv admin note: text overlap with arXiv:1905.1121

    WiFi-based PCL for monitoring private airfields

    Get PDF
    In this article, the potential exploitation of WiFi-based PCL systems is investigated with reference to a real-world civil application in which these sensors are expected to nicely complement the existing technologies adopted for monitoring purposes, especially when operating against noncooperative targets. In particular, we consider the monitoring application of small private airstrips or airfields. With this terminology, we refer to open areas designated for the takeoff and landing of small aircrafts that, unlike an airport, have generally short and possibly unpaved runways (e.g., grass, dirt, sand, or gravel surfaces) and do not necessarily have terminals. More important, such areas usually are devoid of conventional technologies, equipment, or procedures adopted to guarantee safety and security in large aerodromes.There exist a huge number of small, privately owned, and unlicensed airfields around the world. Private aircraft owners mainly use these “airports” for recreational, single-person, or private flights for small groups and training flight purposes. In addition, residential airparks have proliferated in recent years, especially inthe United States, Canada, and South Africa. A residential airpark, or “fly-in community,” features common airstrips where homes with attached hangars allow owners to taxi from their hangar to a shared runway. In many cases, roads are dual use for both cars and planes.In such scenarios, the possibility to employ low-cost, compact, nonintrusive, and nontransmitting sensors as a way to improve safety and security with limited impact on the airstrips' users would be of great potential interest. To this purpose, WiFi-based passive radar sensors appear to be good candidates [23]. Therefore, we investigate their application against typical operative conditions experienced in the scenarios described earlier. The aim is to assess the capability to detect, localize, and track authorized and unauthorized targets that can be occupying the runway and the surrounding areas

    Automatic differentiation of non-holonomic fast marching for computing most threatening trajectories under sensors surveillance

    Full text link
    We consider a two player game, where a first player has to install a surveillance system within an admissible region. The second player needs to enter the the monitored area, visit a target region, and then leave the area, while minimizing his overall probability of detection. Both players know the target region, and the second player knows the surveillance installation details.Optimal trajectories for the second player are computed using a recently developed variant of the fast marching algorithm, which takes into account curvature constraints modeling the second player vehicle maneuverability. The surveillance system optimization leverages a reverse-mode semi-automatic differentiation procedure, estimating the gradient of the value function related to the sensor location in time N log N
    corecore