681,679 research outputs found
Radar spectrum opportunities for cognitive communications transmission
In relation to opportunistic access to radar spectrum, the impact of the radar on a communication system is investigated in this paper. This paper illustrates that by exploring the spatial and temporal opportunities in the radar spectrum and therefore improving the tolerance level to radar interference, a substantial increase on the throughput of a communication system is possible. Results are presented regarding the impact of swept radars on a WiMAX system. The results show the impact of SIR (Received WiMAX signal to received radar signal ratio), radar antenna radiation patterns and rotation period estimation on the feasibility of radar spectrum access.In relation to opportunistic access to radar spectrum, the impact of the radar on a communication system is investigated in this paper. This paper illustrates that by exploring the spatial and temporal opportunities in the radar spectrum and therefore improving the tolerance level to radar interference, a substantial increase on the throughput of a communication system is possible. Results are presented regarding the impact of swept radars on a WiMAX system. The results show the impact of SIR (Received WiMAX signal to received radar signal ratio), radar antenna radiation patterns and rotation period estimation on the feasibility of radar spectrum acces
Numerical study on signatures of atmospheric convective cells in radar images of the ocean
Current and wind variations at the ocean surface can give rise to a modulation of the sea surface roughness and thus become visible in radar images. The discrimination between radar signatures of oceanic and atmospheric phenomena can be quite difficult, since signatures of different origin can have very similar shapes and magnitudes and are often superimposed upon each other. In this work we employ a numerical radar imaging model for an investigation of typical properties of radar signatures of atmospheric convective cells and of theoretical differences between such atmospherically induced radar signatures and those of oceanic phenomena. We show that main characteristics of observed multifrequency/multipolarization radar signatures of atmospheric convective cells over the Gulf Stream are reproduced quite well by the proposed model. This encourages us to vary wind and radar parameters systematically in order to get a general overview of the dependency of atmospherically induced radar signatures on these parameters. Finally, we compare typical characteristics of radar signatures of atmospheric and oceanic phenomena, and we present simulated radar images of a scenario of superimposed atmospheric convective cells and oceanic internal waves. We show that the proposed model supports the experimental finding that radar signatures of oceanic phenomena are stronger at horizontal (HH) than at vertical (VV) polarization, while atmospherically induced radar signatures are better visible at VV polarization
The Fundamentals of Radar with Applications to Autonomous Vehicles
Radar systems can be extremely useful for applications in autonomous vehicles. This paper seeks to show how radar systems function and how they can apply to improve autonomous vehicles. First, the basics of radar systems are presented to introduce the basic terminology involved with radar. Then, the topic of phased arrays is presented because of their application to autonomous vehicles. The topic of digital signal processing is also discussed because of its importance for all modern radar systems. Finally, examples of radar systems based on the presented knowledge are discussed to illustrate the effectiveness of radar systems in autonomous vehicles
Joint radar-communication waveform designs using signals from multiplexed users
Joint radar-communication designs are exploited in applications where radar and communications systems share the same frequency band or when both radar sensing and information communication functions are required in the same system. Finding a waveform that is suitable for both radar and communication is challenging due to the difference between radar and communication operations. In this paper, we propose a new method of designing dual-functional waveforms for both radar and communication using signals from multiplexed communications users. Specifically, signals from different communications users multiplexed in the time, code or frequency domains across different data bits are linearly combined to generate an overall radar waveform. Three typical radar waveforms are considered. The coefficients of the linear combination are optimized to minimize the mean squared error with or without a constraint on the signal-to-noise ratio (SNR) for the communications signals. Numerical results show that the optimization without SNR constraint can almost perfectly approximate the radar waveform in all the cases considered, giving good dual-functional waveforms for both radar and communication. Also, among different multiplexing techniques, time division multiple access is the best option to approximate the radar waveform, followed by code division multiple access and orthogonal frequency division multiple access
Enhanced monopulse radar tracking using empirical mode decomposition
Monopulse radar processors are used to track targets that appear in the look direction beamwidth. The target tracking information (range, azimuth angle, and elevation angle) are affected when manmade high power interference (jamming) is introduced to the radar processor through the radar antenna main lobe (main lobe interference) or antenna side lobe (side lobe interference). This interference changes the values of the error voltage which is responsible for directing the radar antenna towards the target. A monopulse radar structure that uses filtering in the empirical mode decomposition (EMD) domain is presented in this paper. EMD is carried out for the complex radar chirp signal with subsequent denoising and thresholding processes used to decrease the noise level in the radar processed data. The performance enhancement of the monopulse radar tracking system with EMD based filtering is included using the standard deviation angle estimation error (STDAE)
Investigations of the lower and middle atmosphere at the Arecibo Observatory and a description of the new VHF radar project
The atmospheric science research at the Arecibo Observatory is performed by means of (active) radar methods and (passive) optical methods. The active methods utilize the 430 NHz radar, the S-band radar on 2380 MHz, and a recently constructed Very High Frequency (VHF) radar. The passive methods include measurements of the mesopause temperature by observing the rotational emissions from OH-bands. The VHF radar design is discussed
Charge-coupled device data processor for an airborne imaging radar system
Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems
Empirical Analysis of Chirp and Multitones Performances with a UWB Software Defined Radar: Range, Distance and Doppler
In this study, a protocol for an unbiased analysis of radar signals' performance. Using a novel UWB software-defined radar, range profile, Doppler profile and detection range are evaluated for both Linear Frequency Modulated pulse and Multitones. The radar was prototyped and is comparable in overall performance to software defined radar test-beds found in the literature. The measured performance was in agreement with the simulations
MIMO Radar Ambiguity Properties and Optimization Using Frequency-Hopping Waveforms
The concept of multiple-input multiple-output (MIMO) radars has drawn considerable attention recently. Unlike the traditional single-input multiple-output (SIMO) radar which emits coherent waveforms to form a focused beam, the MIMO radar can transmit orthogonal (or incoherent) waveforms. These waveforms can be used to increase the system spatial resolution. The waveforms also affect the range and Doppler resolution. In traditional (SIMO) radars, the ambiguity function of the transmitted pulse characterizes the compromise between range and Doppler resolutions. It is a major tool for studying and analyzing radar signals. Recently, the idea of ambiguity function has been extended to the case of MIMO radar. In this paper, some mathematical properties of the MIMO radar ambiguity function are first derived. These properties provide some insights into the MIMO radar waveform design. Then a new algorithm for designing the orthogonal frequency-hopping waveforms is proposed. This algorithm reduces the sidelobes in the corresponding MIMO radar ambiguity function and makes the energy of the ambiguity function spread evenly in the range and angular dimensions
- …
