4,072 research outputs found

    Ant-based Survivable Routing in Dynamic WDM Networks with Shared Backup Paths

    Get PDF

    Near-infrared Variability among YSOs in the Star Formation Region Cygnus OB7

    Full text link
    We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1 square degree region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer (WISE), we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field imaging CAMera (WFCAM) on the United Kingdom InfraRed Telescope (UKIRT), we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J ~17. We study detailed light curves and color trajectories of ~50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on time scales of a few years. We divide the variability into four observational classes: 1) stars with periodic variability stable over long timescales, 2) variables which exhibit short-lived cyclic behavior, 3) long duration variables, and 4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of < 1Myr, with at least one individual, wildly varying, source ~ 100,000 yr old. We have also discovered a Class II eclipsing binary system with a period of 17.87 days.Comment: ApJ accepted: 44 pages includes 5 tables and 16 figures. Some figures condensed for Astro/p

    Non-thermal quantum engine in transmon qubits

    Full text link
    The design and implementation of quantum technologies necessitates the understanding of thermodynamic processes in the quantum domain. In stark contrast to macroscopic thermodynamics, at the quantum scale processes generically operate far from equilibrium and are governed by fluctuations. Thus, experimental insight and empirical findings are indispensable in developing a comprehensive framework. To this end, we theoretically propose an experimentally realistic quantum engine that uses transmon qubits as working substance. We solve the dynamics analytically and calculate its efficiency

    Dissipation assisted Thouless pumping in the Rice-Mele model

    Get PDF
    We investigate the effect of dissipation from a thermal environment on topological pumping in the periodically-driven Rice-Mele model. We report that dissipation can improve the robustness of pumping quantisation in a regime of finite driving frequencies. Specifically, in this regime, a low-temperature dissipative dynamics can lead to a pumped charge that is much closer to the Thouless quantised value, compared to a coherent evolution. We understand this effect in the Floquet framework: dissipation increases the population of a Floquet band which shows a topological winding, where pumping is essentially quantised. This finding is a step towards understanding a potentially very useful resource to exploit in experiments, where dissipation effects are unavoidable. We consider small couplings with the environment and we use a Bloch-Redfield quantum master equation approach for our numerics: Comparing these results with an exact MPS numerical treatment we find that the quantum master equation works very well also at low temperature, a quite remarkable fact.Comment: 21 pages, 8 figure
    corecore