5,589 research outputs found

    Class Proportion Estimation with Application to Multiclass Anomaly Rejection

    Full text link
    This work addresses two classification problems that fall under the heading of domain adaptation, wherein the distributions of training and testing examples differ. The first problem studied is that of class proportion estimation, which is the problem of estimating the class proportions in an unlabeled testing data set given labeled examples of each class. Compared to previous work on this problem, our approach has the novel feature that it does not require labeled training data from one of the classes. This property allows us to address the second domain adaptation problem, namely, multiclass anomaly rejection. Here, the goal is to design a classifier that has the option of assigning a "reject" label, indicating that the instance did not arise from a class present in the training data. We establish consistent learning strategies for both of these domain adaptation problems, which to our knowledge are the first of their kind. We also implement the class proportion estimation technique and demonstrate its performance on several benchmark data sets.Comment: Accepted to AISTATS 2014. 15 pages. 2 figure

    Machine Learning with a Reject Option: A survey

    Full text link
    Machine learning models always make a prediction, even when it is likely to be inaccurate. This behavior should be avoided in many decision support applications, where mistakes can have severe consequences. Albeit already studied in 1970, machine learning with rejection recently gained interest. This machine learning subfield enables machine learning models to abstain from making a prediction when likely to make a mistake. This survey aims to provide an overview on machine learning with rejection. We introduce the conditions leading to two types of rejection, ambiguity and novelty rejection, which we carefully formalize. Moreover, we review and categorize strategies to evaluate a model's predictive and rejective quality. Additionally, we define the existing architectures for models with rejection and describe the standard techniques for learning such models. Finally, we provide examples of relevant application domains and show how machine learning with rejection relates to other machine learning research areas

    Fairness in Credit Scoring: Assessment, Implementation and Profit Implications

    Full text link
    The rise of algorithmic decision-making has spawned much research on fair machine learning (ML). Financial institutions use ML for building risk scorecards that support a range of credit-related decisions. Yet, the literature on fair ML in credit scoring is scarce. The paper makes two contributions. First, we provide a systematic overview of algorithmic options for incorporating fairness goals in the ML model development pipeline. In this scope, we also consolidate the space of statistical fairness criteria and examine their adequacy for credit scoring. Second, we perform an empirical study of different fairness processors in a profit-oriented credit scoring setup using seven real-world data sets. The empirical results substantiate the evaluation of fairness measures, identify more and less suitable options to implement fair credit scoring, and clarify the profit-fairness trade-off in lending decisions. Specifically, we find that multiple fairness criteria can be approximately satisfied at once and identify separation as a proper criterion for measuring the fairness of a scorecard. We also find fair in-processors to deliver a good balance between profit and fairness. More generally, we show that algorithmic discrimination can be reduced to a reasonable level at a relatively low cost.Comment: Preprint submitted to European Journal of Operational Researc
    • …
    corecore