132,055 research outputs found

    Secure and Efficient RNS Approach for Elliptic Curve Cryptography

    Get PDF
    Scalar multiplication, the main operation in elliptic curve cryptographic protocols, is vulnerable to side-channel (SCA) and fault injection (FA) attacks. An efficient countermeasure for scalar multiplication can be provided by using alternative number systems like the Residue Number System (RNS). In RNS, a number is represented as a set of smaller numbers, where each one is the result of the modular reduction with a given moduli basis. Under certain requirements, a number can be uniquely transformed from the integers to the RNS domain (and vice versa) and all arithmetic operations can be performed in RNS. This representation provides an inherent SCA and FA resistance to many attacks and can be further enhanced by RNS arithmetic manipulation or more traditional algorithmic countermeasures. In this paper, extending our previous work, we explore the potentials of RNS as an SCA and FA countermeasure and provide an description of RNS based SCA and FA resistance means. We propose a secure and efficient Montgomery Power Ladder based scalar multiplication algorithm on RNS and discuss its SCAFA resistance. The proposed algorithm is implemented on an ARM Cortex A7 processor and its SCA-FA resistance is evaluated by collecting preliminary leakage trace results that validate our initial assumptions

    Residue Number System Hardware Emulator and Instructions Generator

    Get PDF
    Residue Number System (RNS) is an alternative form of representing integers on which a large value gets represented by a set of smaller and independent integers. Cryptographic and signal filtering algorithms benefit from the use of RNS, due to its capabilities to increase performance and security. Herein, a simulation tool is presented which emulates the hardware implementation of an actual RNS co-processor. An “high-level to assembly” instructions generator is also built into this tool. The programmability and scalable architecture of the considered processor along with the high level description of the algorithm allows researchers and developers to easily evaluate and test their RNS algorithms on an actual architecture, using Java

    Demographics and Perceptions of Work Environment for Registered Nurses

    Get PDF
    Registered nurses (RNs) are the lifeblood of hospitals. Therefore, retaining skilled nurses is necessary to insure the viability of these institutions. A two-year longitudinal, non-experimental research study utilized a descriptive design to compare the perceptions of RNs who remained on their units to those who left or changed units over a two-year time period. The purpose of this study was to ascertain whether there was a statistically significant difference between these two groups. Results in several areas indicate that further evaluation is necessary by nurse managers and administration. This information could help retain RNs as well as attract qualified nurses to a center of excellence

    Condensation phase transitions of symmetric conserved-mass aggregation model on complex networks

    Full text link
    We investigate condensation phase transitions of symmetric conserved-mass aggregation (SCA) model on random networks (RNs) and scale-free networks (SFNs) with degree distribution P(k)kγP(k) \sim k^{-\gamma}. In SCA model, masses diffuse with unite rate, and unit mass chips off from mass with rate ω\omega. The dynamics conserves total mass density ρ\rho. In the steady state, on RNs and SFNs with γ>3\gamma>3 for ω\omega \neq \infty, we numerically show that SCA model undergoes the same type condensation transitions as those on regular lattices. However the critical line ρc(ω)\rho_c (\omega) depends on network structures. On SFNs with γ3\gamma \leq 3, the fluid phase of exponential mass distribution completely disappears and no phase transitions occurs. Instead, the condensation with exponentially decaying background mass distribution always takes place for any non-zero density. For the existence of the condensed phase for γ3\gamma \leq 3 at the zero density limit, we investigate one lamb-lion problem on RNs and SFNs. We numerically show that a lamb survives indefinitely with finite survival probability on RNs and SFNs with γ>3\gamma >3, and dies out exponentially on SFNs with γ3\gamma \leq 3. The finite life time of a lamb on SFNs with γ3\gamma \leq 3 ensures the existence of the condensation at the zero density limit on SFNs with γ3\gamma \leq 3 at which direct numerical simulations are practically impossible. At ω=\omega = \infty, we numerically confirm that complete condensation takes place for any ρ>0\rho > 0 on RNs. Together with the recent study on SFNs, the complete condensation always occurs on both RNs and SFNs in zero range process with constant hopping rate.Comment: 6 pages, 6 figure
    corecore