
Residue Number System Hardware Emulator and
Instructions Generator

Juvenal Araújo∗, Pedro Miguens Matutino† and Ricardo Chaves§
∗§INESC-ID / IST, Universidade de Lisboa, Lisbon, Portugal - †INESC-ID / ISEL, IPL, Lisbon, Portugal

Email: ∗juvenal.araujo@tecnico.ulisboa.pt, †pmmm@sips.inesc-id.pt, §ricardo.chaves@inesc-id.pt

Abstract—Residue Number System (RNS) is an alternative
form of representing integers on which a large value gets
represented by a set of smaller and independent integers.
Cryptographic and signal filtering algorithms benefit from the
use of RNS, due to its capabilities to increase performance and
security. Herein, a simulation tool is presented which emulates
the hardware implementation of an actual RNS co-processor. An
“high-level to assembly” instructions generator is also built into
this tool. The programmability and scalable architecture of the
considered processor along with the high level description of the
algorithm allows researchers and developers to easily evaluate
and test their RNS algorithms on an actual architecture, using
Java.

I. INTRODUCTION

Residue Number System (RNS) is an alternative form of
representing integers which allows to represent very large
integer values as a set of smaller integers. With this, the
required computations can be performed independently over
this set of smaller integers, allowing for faster and more
parallel execution flows [1]. A large integer X is represented
by the remainder of the division of X by a set of co-
prime smaller integers. This co-prime integers forms a base
B1 = (m1,m2, . . . ,mh), namely as moduli-set, which is able
to represent any integer no greater than the Dynamic Range
(DR):

M1 =
h∏

i=1

mi. (1)

There is therefore a unique representation of X < M1 in the
form

xi = X mod mi , 1 ≤ i ≤ h. (2)

Given integers X and Y represented in RNS, the result Z =
X � Y (where � denotes the arithmetic operations +, − or
×), can be independent and simultaneously computed in the
RNS execution flows, each one called as RNS channel.

In addition to its parallelisation capabilities, particularly
useful in asymmetric cryptography [2] and signal filtering [3],
RNS also has the capability of introducing extra security and
valuable countermeasures to Side-Channel Attacks (SCA) [4],
critical in security applications.

This work presents an RNS emulator, which provides re-
searchers or developers the opportunity to test and simulate
their RNS algorithms on an actual hardware architecture [5],
emulated in software, using Java to describe operations. Ad-
ditionally, the assembly instructions to the actual RNS co-
processor are also generated by the presented tool.

II. RNS EMULATOR AND CODE GENERATOR

Several architectures targeting asymmetrical cryptography
in RNS exist in the state of the art [6]–[8]. However, these
lack open and easy to use documentation and programmability
options. In [5] a programmable and scalable RNS architecture
providing efficient channel arithmetic with addition, subtrac-
tion and multiplication is proposed. This architecture can be
used as a co-processor, speeding up the computation of a
general purpose processor, or as an embedded autonomous
processing unit. Its programmability and scalable architecture
allows it to be used for different algorithms, including signal
processing and cryptography. By emulating this hardware
architecture, the proposed simulation tool provides the ability
to implement, evaluate and test new RNS approaches to their
computations, as well as additional RNS security features.

The RNS channel architecture described in [5] is therefore
used for every RNS channel. Note that the required number of
RNS channels depends on the DR and the number of bits per
channel. This set of h channels form an RNS sub-processor.

In order to allow for a broader range of applications, such
as the Montgomery Modular Multiplication [9], the hardware
architecture is composed by two similar RNS sub-processors.
Communication between RNS channels of a sub-processor is
performed by a common bus, while communication between
RNS sub-processors is accomplished using FIFOs, as depicted
in Figure 1.

#1 #2

datadata

code

RNS co-processor

R
N
S

RNS
sub-processor

R
N
S

RNS
sub-processor

Fig. 1: RNS co-processor architecture.
In order to configure the emulated hardware (e.g. moduli-

set, DR) the tool allows for a developer to input an XML file
describing the intended configuration. Alternatively, the tool is
also able to configure it, given the intended DR and the number
of bits per RNS channel, writing the hardware configuration
to an XML file in the same format.

Running on top of the emulated processor is an interface-
like block which translates a high-level Java description into
assembly, that is then used to emulate the expected behaviour
of the hardware. At the same time, these assembly instructions
are recorded into a file, allowing them to be later loaded into
the actual processor.

Paper 24



Listing 1: High-level
/*Moduli set and hardware configuration*/
Main.loadModuliSet("mult.xml");
/* Operands to be converted to RNS*/
Rns A = new Rns("70000","A");
Rns B = new Rns("51000","B");
/* Reserve register for variable C

without setting a value */
BigInteger C_bin;
Rns C = new Rns("C");
/* C = A x B */
A.mult(B, C);
/* Convert C back to binary*/
C_bin = C.toIntMRC();

Listing 2: Assembly code
[01] Bin-to-RNS_p A
[10] Bin-to-RNS A
[01] Bin-to-RNS_p B
[10] Bin-to-RNS B
[11] mul_a C,A,B
[01] RNS-to-MRC aux,C
[01] MRC-to-Bin aux

Fig. 2: Multiplication example

The high-level description language includes instructions
for conversion to and from RNS, non-modular addition/sub-
traction/multiplication operations and Montgomery Modular
Multiplication. An example performing a single multiplication
is depicted in Figure 2.

The assembly instructions can be sent to each one of the
RNS sub-processors, or both, defined by the first 2 bits of the
instruction. The first instruction is sent to RNS sub-processor
#1 with an added “_p” indicating that it should propagate the
value being read from the exterior data-bus to sub-processor
#2, since this sub-processor is not directly connected to the
exterior [5].

With this approach the user does not need to know the de-
fined ISA for this architecture and minimum RNS knowledge
is needed to write the high-level description of a given algo-
rithm. This way, developers and designers do not require any
particular knowledge on RNS to implement their algorithms
and can immediately benefit from an architecture exploring
the RNS parallelisation properties.

III. TESTING AND VALIDATION

In order to test and validate the proposed tool, RSA [10]
and Elliptic Curve Cryptography (ECC) [11] algorithms were
implemented along with other arithmetic operations. RSA is
based on a sequence of modular multiplications [12], whereas
ECC is based on a mix of non-modular operations and
modular multiplications [13]. Three other simpler examples
are also provided for educational purposes, performing a single
multiplication, a single modular multiplication, and an Elliptic
Curve Point Addition [13].

The RNS emulator tool is publicly available in [14], together
with the aforementioned examples.

IV. CONCLUSIONS

In conclusion, a development tool was created offering the
possibility to emulate an existing RNS processing architecture
and to generate its assembly code. Java based high-level
instructions are used to describe the desired algorithms, which
do not require any RNS knowledge from the developers.
Furthermore, the correctness of the tool was verified and
tested by implementing complex examples, such as the two
asymmetrical cryptographic algorithms RSA and ECC, and

running the produced assembly instructions in the actual
hardware RNS co-processor.

ACKNOWLEDGMENTS

"This work was partially supported by the ARTEMIS Joint Undertaking
under grant agreement no 621429 and by national funds through Fundação
para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013."

REFERENCES

[1] H. L. Garner, “The Residue Number System,” IRE Transactions on
Electronic Computers, vol. EC-8, no. 2, pp. 140–147, June 1959.

[2] J. Bajard and L. Imbert, “A full RNS implementation of RSA,” Com-
puters, IEEE Transactions on, vol. 53, no. 6, pp. 769–774, June 2004.

[3] R. Conway and J. Nelson, “Improved rns fir filter architectures,” Circuits
and Systems II: Express Briefs, IEEE Transactions on, vol. 51, no. 1,
pp. 26–28, Jan 2004.

[4] D. Schinianakis and T. Stouraitis, “Hardware-fault attack handling in
rns-based montgomery multipliers,” in Circuits and Systems (ISCAS),
2013 IEEE International Symposium on, May 2013, pp. 3042–3045.

[5] P. Matutino, R. Chaves, and L. Sousa, “An Efficient Scalable RNS
Architecture for Large Dynamic Ranges,” Journal of Signal Processing
Systems, pp. 1–15, 2014.

[6] S. Kawamura, M. Koike, F. Sano, and A. Shimbo, “Cox-Rower Ar-
chitecture for Fast Parallel Montgomery Multiplication,” in Advances
in Cryptology – EUROCRYPT 2000, ser. Lecture Notes in Computer
Science, B. Preneel, Ed. Springer Berlin Heidelberg, 2000, vol. 1807,
pp. 523–538.

[7] J. Wei, W. Guo, H. Liu, and Y. Tan, “A Unified Cryptographic Processor
for RSA and ECC in RNS,” in Computer Engineering and Technology,
ser. Communications in Computer and Information Science, W. Xu,
L. Xiao, C. Zhang, J. Li, and L. Yu, Eds. Springer Berlin Heidelberg,
2013, vol. 396, pp. 19–32.

[8] D. Schinianakis, A. Fournaris, H. Michail, A. Kakarountas, and
T. Stouraitis, “An RNS Implementation of an Fp Elliptic Curve Point
Multiplier,” Circuits and Systems I: Regular Papers, IEEE Transactions
on, vol. 56, no. 6, pp. 1202–1213, June 2009.

[9] D. Schinianakis and T. Stouraitis, “A RNS Montgomery multiplication
architecture,” in Circuits and Systems (ISCAS), 2011 IEEE International
Symposium on, May 2011, pp. 1167–1170.

[10] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120–126, 1978.

[11] R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck, “Fast Key
Exchange with Elliptic Curve Systems,” in Advances in Cryptology –
CRYPT0’95, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 1995, vol. 963, pp. 43–56.

[12] M. Joye and S.-M. Yen, “The Montgomery Powering Ladder,” Crypto-
graphic Hardware and Embedded Systems, vol. 2523, 2003.

[13] J.-C. Bajard, S. Duquesne, and M. D. Ercegovac, “Combining leak-
resistant arithmetic for elliptic curves defined over Fp and RNS repre-
sentation.” IACR Cryptology ePrint Archive, vol. 2010, p. 311, 2010.

[14] J. Araujo, P. Matutino, and R. Chaves, http://sips.inesc-id.pt/~rjfc/cores/
RNS/, September 2016.

Paper 24




