1,607 research outputs found

    Modeling of RFID-Enabled Real-Time Manufacturing Execution System in Mixed-Model Assembly Lines

    Get PDF
    To quickly respond to the diverse product demands, mixed-model assembly lines are well adopted in discrete manufacturing industries. Besides the complexity in material distribution, mixed-model assembly involves a variety of components, different process plans and fast production changes, which greatly increase the difficulty for agile production management. Aiming at breaking through the bottlenecks in existing production management, a novel RFID-enabled manufacturing execution system (MES), which is featured with real-time and wireless information interaction capability, is proposed to identify various manufacturing objects including WIPs, tools, and operators, etc., and to trace their movements throughout the production processes. However, being subject to the constraints in terms of safety stock, machine assignment, setup, and scheduling requirements, the optimization of RFID-enabled MES model for production planning and scheduling issues is a NP-hard problem. A new heuristical generalized Lagrangian decomposition approach has been proposed for model optimization, which decomposes the model into three subproblems: computation of optimal configuration of RFID senor networks, optimization of production planning subjected to machine setup cost and safety stock constraints, and optimization of scheduling for minimized overtime. RFID signal processing methods that could solve unreliable, redundant, and missing tag events are also described in detail. The model validity is discussed through algorithm analysis and verified through numerical simulation. The proposed design scheme has important reference value for the applications of RFID in multiple manufacturing fields, and also lays a vital research foundation to leverage digital and networked manufacturing system towards intelligence

    Wisent: Robust Downstream Communication and Storage for Computational RFIDs

    Full text link
    Computational RFID (CRFID) devices are emerging platforms that can enable perennial computation and sensing by eliminating the need for batteries. Although much research has been devoted to improving upstream (CRFID to RFID reader) communication rates, the opposite direction has so far been neglected, presumably due to the difficulty of guaranteeing fast and error-free transfer amidst frequent power interruptions of CRFID. With growing interest in the market where CRFIDs are forever-embedded in many structures, it is necessary for this void to be filled. Therefore, we propose Wisent-a robust downstream communication protocol for CRFIDs that operates on top of the legacy UHF RFID communication protocol: EPC C1G2. The novelty of Wisent is its ability to adaptively change the frame length sent by the reader, based on the length throttling mechanism, to minimize the transfer times at varying channel conditions. We present an implementation of Wisent for the WISP 5 and an off-the-shelf RFID reader. Our experiments show that Wisent allows transfer up to 16 times faster than a baseline, non-adaptive shortest frame case, i.e. single word length, at sub-meter distance. As a case study, we show how Wisent enables wireless CRFID reprogramming, demonstrating the world's first wirelessly reprogrammable (software defined) CRFID.Comment: Accepted for Publication to IEEE INFOCOM 201

    Validating an office simulation model using RFID technology

    Get PDF
    This paper presents the validation of an office utilisation model for the research project called "User Simulation of Space Utilisation (USSU)". The result of this research is a system that can be used for analysing and evaluating the space utilisation of a building for any given organisation. A system for building usage simulation that produces data about activities of members of an organisation can substantially improve the relevance and performance of building simulation tools. This is relevant for engineering domains as well as for architects to evaluate the performance of a building design. For a thorough evaluation of the system an experiment was executed for assessing its predictive quality in the context of a real building, organisation and actual human behaviour; this experiment was executed using RFID technology. The result of the experiment was observed data about the space utilisation of the selected organisation. These data were compared with the space utilisation predicted by the USSU system to evaluate the simulation model. The validation of USSU showed that there were no significant differences between the predicated and observed activity behaviour. As a consequence, the output of USSU is considered to be valid

    Optimization of Mobile RFID Platforms: A Cross-Layer Approach.

    Get PDF

    Stability of synchronous queued RFID networks

    Get PDF
    Queued Radio Frequency Identification (RFID) networks arise naturally in many applications, where tags are grouped into batches, and each batch must be processed before the next reading job starts. In these cases, the system must be able to handle all incoming jobs, keeping the queue backlogs bounded. This property is called stability. Besides, in RFID networks, it is common that some readers cannot operate at the same time, due to mutual interferences. This fact reduces the maximum traffic that readers can process since they have to share the channel. Synchronous networks share the channel using a TDMA approach. The goal of this work is to analytically determine whether a synchronous queued RFID network attains stable operation under a given incoming traffic. Stability depends on the service rate, which is characterized in this paper using an exact numerical method based on a recursive analytical approach, overcoming the limitations of previous works, which were based on simplifications. We also address different flow optimization problems, such as computing the maximum joint traffic that a network can process stably, selecting the minimal number of readers to process a given total load, or determining the optimal timeslot duration, which are novel in the RFID literature.Ministerio de EconomĂ­a, Industria y Competitividad | Ref. TEC2016-76465-C2-1-

    Stability of synchronous queued RFID networks

    Get PDF
    Queued Radio Frequency Identification (RFID) networks arise naturally in many applications, where tags are grouped into batches, and each batch must be processed before the next reading job starts. In these cases, the system must be able to handle all incoming jobs, keeping the queue backlogs bounded. This property is called stability. Besides, in RFID networks, it is common that some readers cannot operate at the same time, due to mutual interferences. This fact reduces the maximum traffic that readers can process since they have to share the channel. Synchronous networks share the channel using a TDMA approach. The goal of this work is to analytically determine whether a synchronous queued RFID network attains stable operation under a given incoming traffic. Stability depends on the service rate, which is characterized in this paper using an exact numerical method based on a recursive analytical approach, overcoming the limitations of previous works, which were based on simplifications. We also address different flow optimization problems, such as computing the maximum joint traffic that a network can process stably, selecting the minimal number of readers to process a given total load, or determining the optimal timeslot duration, which are novel in the RFID literature.This work was supported by the Project AIM, (AEI/FEDER, EU) under Grant TEC2016-76465-C2-1-R

    Twins:Device-free Object Tracking using Passive Tags

    Full text link
    Without requiring objects to carry any transceiver, device-free based object tracking provides a promising solution for many localization and tracking systems to monitor non-cooperative objects such as intruders. However, existing device-free solutions mainly use sensors and active RFID tags, which are much more expensive compared to passive tags. In this paper, we propose a novel motion detection and tracking method using passive RFID tags, named Twins. The method leverages a newly observed phenomenon called critical state caused by interference among passive tags. We contribute to both theory and practice of such phenomenon by presenting a new interference model that perfectly explains this phenomenon and using extensive experiments to validate it. We design a practical Twins based intrusion detection scheme and implement a real prototype with commercial off-the-shelf reader and tags. The results show that Twins is effective in detecting the moving object, with low location error of 0.75m in average

    DCPP/POLYGAIT Inventory Control System

    Get PDF
    This report discusses a proposed system to improve upon inventory management issues experienced in the M&TE Tool room for the PG&E Diablo Canyon Power plant. Effective inventory tracking and management is an important characteristic of any organization handling physical assets, and without the proper system in place, companies may lose expensive items and waste time by not having equipment available when needed. The tool room is experiencing inventory shrinkage of M&TE equipment nearing 100,000 per year largely because of an inefficient checkout system that fails to keep employees accountable for the tools they check out. Even more costly than the shrinkage of inventory is the expense of downtime incurred by not having a tool ready when needed. Two main issues with the current system were identified as the reasons for the shrinkage and lack of accountability: 1 when no tool clerk is on staff, mainly nights and weekends, an unreliable paper-method for checkout is used, and 2, employees are not held responsible for checking their tools back in, resulting in tools being handed-off outside of the tool room. To combat these problems, a self-checkout/check-in system was developed, eliminating the need for the paper system, requiring an employee login for returning tools, and reducing the total number of steps in the process by 36%. PG&E was also interested in using RFID (Radio Frequency Identification) technology to further increase accountability and improve the tracking of tools in and out of the tool room. A working proof-of-concept model was designed, built, and tested at Cal Poly’s POLYGAIT Laboratory along with recommendations for a potential implementation at PG&E. The results of the portal testing indicate that the best RFID tags for larger items include the Confidex Ironside Slim or Xerafy Cargo Trak tags while the Confidex Captura G2XM should be used for cabled probes. In addition, a maximum of six tools should be carried through the portal at a single time. An economic analysis for the proposed RFID system with revised checkout was performed along with two other alternatives: an increase in staffing on nights and weekends with the revised checkout and regular staffing with the revised checkout. All three alternatives were compared to the current state, which includes regular staffing without the revised checkout. The results of the economic analysis suggest that the RFID system paired with the revised checkout provides the lowest total cost solution, with a payback period of 0.046 years and a cumulative four-year return of 1,442,914.00. The second total lowest cost solution, which is the revised checkout method alone without an RFID system or increase in staffing, provides the fastest payback period of all the alternatives, in 0.019 years, but provides less of a return on an investment than when paired with the RFID system
    • …
    corecore