22,142 research outputs found

    View Selection in Semantic Web Databases

    Get PDF
    We consider the setting of a Semantic Web database, containing both explicit data encoded in RDF triples, and implicit data, implied by the RDF semantics. Based on a query workload, we address the problem of selecting a set of views to be materialized in the database, minimizing a combination of query processing, view storage, and view maintenance costs. Starting from an existing relational view selection method, we devise new algorithms for recommending view sets, and show that they scale significantly beyond the existing relational ones when adapted to the RDF context. To account for implicit triples in query answers, we propose a novel RDF query reformulation algorithm and an innovative way of incorporating it into view selection in order to avoid a combinatorial explosion in the complexity of the selection process. The interest of our techniques is demonstrated through a set of experiments.Comment: VLDB201

    Distributed Processing of Generalized Graph-Pattern Queries in SPARQL 1.1

    Get PDF
    We propose an efficient and scalable architecture for processing generalized graph-pattern queries as they are specified by the current W3C recommendation of the SPARQL 1.1 "Query Language" component. Specifically, the class of queries we consider consists of sets of SPARQL triple patterns with labeled property paths. From a relational perspective, this class resolves to conjunctive queries of relational joins with additional graph-reachability predicates. For the scalable, i.e., distributed, processing of this kind of queries over very large RDF collections, we develop a suitable partitioning and indexing scheme, which allows us to shard the RDF triples over an entire cluster of compute nodes and to process an incoming SPARQL query over all of the relevant graph partitions (and thus compute nodes) in parallel. Unlike most prior works in this field, we specifically aim at the unified optimization and distributed processing of queries consisting of both relational joins and graph-reachability predicates. All communication among the compute nodes is established via a proprietary, asynchronous communication protocol based on the Message Passing Interface

    RDF-TR: Exploiting structural redundancies to boost RDF compression

    Get PDF
    The number and volume of semantic data have grown impressively over the last decade, promoting compression as an essential tool for RDF preservation, sharing and management. In contrast to universal compressors, RDF compression techniques are able to detect and exploit specific forms of redundancy in RDF data. Thus, state-of-the-art RDF compressors excel at exploiting syntactic and semantic redundancies, i.e., repetitions in the serialization format and information that can be inferred implicitly. However, little attention has been paid to the existence of structural patterns within the RDF dataset; i.e. structural redundancy. In this paper, we analyze structural regularities in real-world datasets, and show three schema-based sources of redundancies that underpin the schema-relaxed nature of RDF. Then, we propose RDF-Tr (RDF Triples Reorganizer), a preprocessing technique that discovers and removes this kind of redundancy before the RDF dataset is effectively compressed. In particular, RDF-Tr groups subjects that are described by the same predicates, and locally re-codes the objects related to these predicates. Finally, we integrate RDF-Tr with two RDF compressors, HDT and k2-triples. Our experiments show that using RDF-Tr with these compressors improves by up to 2.3 times their original effectiveness, outperforming the most prominent state-of-the-art techniques

    TweetsKB: A Public and Large-Scale RDF Corpus of Annotated Tweets

    Full text link
    Publicly available social media archives facilitate research in a variety of fields, such as data science, sociology or the digital humanities, where Twitter has emerged as one of the most prominent sources. However, obtaining, archiving and annotating large amounts of tweets is costly. In this paper, we describe TweetsKB, a publicly available corpus of currently more than 1.5 billion tweets, spanning almost 5 years (Jan'13-Nov'17). Metadata information about the tweets as well as extracted entities, hashtags, user mentions and sentiment information are exposed using established RDF/S vocabularies. Next to a description of the extraction and annotation process, we present use cases to illustrate scenarios for entity-centric information exploration, data integration and knowledge discovery facilitated by TweetsKB
    corecore