53 research outputs found

    Quotient Complexity of Regular Languages

    Full text link
    The past research on the state complexity of operations on regular languages is examined, and a new approach based on an old method (derivatives of regular expressions) is presented. Since state complexity is a property of a language, it is appropriate to define it in formal-language terms as the number of distinct quotients of the language, and to call it "quotient complexity". The problem of finding the quotient complexity of a language f(K,L) is considered, where K and L are regular languages and f is a regular operation, for example, union or concatenation. Since quotients can be represented by derivatives, one can find a formula for the typical quotient of f(K,L) in terms of the quotients of K and L. To obtain an upper bound on the number of quotients of f(K,L) all one has to do is count how many such quotients are possible, and this makes automaton constructions unnecessary. The advantages of this point of view are illustrated by many examples. Moreover, new general observations are presented to help in the estimation of the upper bounds on quotient complexity of regular operations

    Descriptional Complexity of the Languages KaL: Automata, Monoids and Varieties

    Full text link
    The first step when forming the polynomial hierarchies of languages is to consider languages of the form KaL where K and L are over a finite alphabet A and from a given variety V of languages, a being a letter from A. All such KaL's generate the variety of languages BPol1(V). We estimate the numerical parameters of the language KaL in terms of their values for K and L. These parameters include the state complexity of the minimal complete DFA and the size of the syntactic monoids. We also estimate the cardinality of the image of A* in the Schuetzenberger product of the syntactic monoids of K and L. In these three cases we obtain the optimal bounds. Finally, we also consider estimates for the cardinalities of free monoids in the variety of monoids corresponding to BPol1(V) in terms of sizes of the free monoids in the variety of monoids corresponding to V.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Maximal Syntactic Complexity of Regular Languages Implies Maximal Quotient Complexities of Atoms

    Full text link
    We relate two measures of complexity of regular languages. The first is syntactic complexity, that is, the cardinality of the syntactic semigroup of the language. That semigroup is isomorphic to the semigroup of transformations of states induced by non-empty words in the minimal deterministic finite automaton accepting the language. If the language has n left quotients (its minimal automaton has n states), then its syntactic complexity is at most n^n and this bound is tight. The second measure consists of the quotient (state) complexities of the atoms of the language, where atoms are non-empty intersections of complemented and uncomplemented quotients. A regular language has at most 2^n atoms and this bound is tight. The maximal quotient complexity of any atom with r complemented quotients is 2^n-1, if r=0 or r=n, and 1+\sum_{k=1}^{r} \sum_{h=k+1}^{k+n-r} \binom{h}{n} \binom{k}{h}, otherwise. We prove that if a language has maximal syntactic complexity, then it has 2^n atoms and each atom has maximal quotient complexity, but the converse is false.Comment: 12 pages, 2 figures, 4 table

    A General Framework for the Derivation of Regular Expressions

    Full text link
    The aim of this paper is to design a theoretical framework that allows us to perform the computation of regular expression derivatives through a space of generic structures. Thanks to this formalism, the main properties of regular expression derivation, such as the finiteness of the set of derivatives, need only be stated and proved one time, at the top level. Moreover, it is shown how to construct an alternating automaton associated with the derivation of a regular expression in this general framework. Finally, Brzozowski's derivation and Antimirov's derivation turn out to be a particular case of this general scheme and it is shown how to construct a DFA, a NFA and an AFA for both of these derivations.Comment: 22 page

    Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages

    Get PDF
    A language LL over an alphabet Σ\Sigma is suffix-convex if, for any words x,y,zΣx,y,z\in\Sigma^*, whenever zz and xyzxyz are in LL, then so is yzyz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms.Comment: 20 pages, 11 figures, 1 table. arXiv admin note: text overlap with arXiv:1605.0669

    Quotient Complexities of Atoms in Regular Ideal Languages

    Get PDF
    A (left) quotient of a language LL by a word ww is the language w1L={xwxL}w^{-1}L=\{x\mid wx\in L\}. The quotient complexity of a regular language LL is the number of quotients of LL; it is equal to the state complexity of LL, which is the number of states in a minimal deterministic finite automaton accepting LL. An atom of LL is an equivalence class of the relation in which two words are equivalent if for each quotient, they either are both in the quotient or both not in it; hence it is a non-empty intersection of complemented and uncomplemented quotients of LL. A right (respectively, left and two-sided) ideal is a language LL over an alphabet Σ\Sigma that satisfies L=LΣL=L\Sigma^* (respectively, L=ΣLL=\Sigma^*L and L=ΣLΣL=\Sigma^*L\Sigma^*). We compute the maximal number of atoms and the maximal quotient complexities of atoms of right, left and two-sided regular ideals.Comment: 17 pages, 4 figures, two table
    corecore