146 research outputs found

    Design, Analysis, Implementation and Evaluation of Real-time Opportunistic Spectrum Access in Cloud-based Cognitive Radio Networks

    Get PDF
    Opportunistic spectrum access in cognitive radio network is proposed for remediation of spectrum under-utilization caused by exclusive licensing for service providers that are intermittently utilizing spectrum at any given geolocation and time. The unlicensed secondary users (SUs) rely on opportunistic spectrum access to maximize spectrum utilization by sensing/identifying the idle bands without causing harmful interference to licensed primary users (PUs). In this thesis, Real-time Opportunistic Spectrum Access in Cloud-based Cognitive Radio Networks (ROAR) architecture is presented where cloud computing is used for processing and storage of idle channels. Software-defined radios (SDRs) are used as SUs and PUs that identify, report, analyze and utilize the available idle channels. The SUs in ROAR architecture query the spectrum geolocation database for idle channels and use them opportunistically. The testbed for ROAR architecture is designed, analyzed, implemented and evaluated for efficient and plausible opportunistic communication between SUs

    Guaranteed Rendezvous for Cognitive Radio Networks Based on Cycle Length

    Get PDF
    Rendezvous is a fundamental process establishing a communication link on common channel between a pair of nodes in the cognitive radio networks. How to reach rendezvous efficiently and effectively is still an open problem. In this work, we propose a guaranteed cycle lengths based rendezvous (CLR) algorithm for cognitive radio networks. When the cycle lengths of the two nodes are coprime, the rendezvous is guaranteed within one rendezvous period considering the time skew between the two nodes. When Ti and Tj are not coprime, i.e., Ti=Tj, the deadlock checking and node IDs are combined to decide the time point and the way to independently change the cycle length on each node to guarantee rendezvous. In detail, as long as the deadlock situation is detected based on the threshold, each node can independently change its cycle length be based on the current checking bit of the node ID. The threshold used for deadlock checking is defined as the length of the maximum possible rendezvous period between the two nodes. As long as the current checking bits between the two nodes are different, the rendezvous will be reached in the following rendezvous period, The theoretical analysis also proves the guarantee of the CLR algorithm under both the two cases. We use three metrics: success rate of rendezvous, expected time to rendezvous and channel load to conduct simulation studies. The simulation results show that the CLR algorithm always has higher successful rendezvous rate of 100%, and stable and low expected time to rendezvous compared to the HH algorithm. In addition, the channel loads are smoothly distributed on all channels with CLR, while HH algorithm depends on the channels with smaller IDs

    Asynchronous Channel-Hopping Scheme under Jamming Attacks

    Get PDF

    Adaptive and autonomous protocol for spectrum identification and coordination in ad hoc cognitive radio network

    Get PDF
    The decentralised structure of wireless Ad hoc networks makes them most appropriate for quick and easy deployment in military and emergency situations. Consequently, in this thesis, special interest is given to this form of network. Cognitive Radio (CR) is defined as a radio, capable of identifying its spectral environment and able to optimally adjust its transmission parameters to achieve interference free communication channel. In a CR system, Dynamic Spectrum Access (DSA) is made feasible. CR has been proposed as a candidate solution to the challenge of spectrum scarcity. CR works to solve this challenge by providing DSA to unlicensed (secondary) users. The introduction of this new and efficient spectrum management technique, the DSA, has however, opened up some challenges in this wireless Ad hoc Network of interest; the Cognitive Radio Ad Hoc Network (CRAHN). These challenges, which form the specific focus of this thesis are as follows: First, the poor performance of the existing spectrum sensing techniques in low Signal to Noise Ratio (SNR) conditions. Secondly the lack of a central coordination entity for spectrum allocation and information exchange in the CRAHN. Lastly, the existing Medium Access Control (MAC) Protocol such as the 802.11 was designed for both homogeneous spectrum usage and static spectrum allocation technique. Consequently, this thesis addresses these challenges by first developing an algorithm comprising of the Wavelet-based Scale Space Filtering (WSSF) algorithm and the Otsu's multi-threshold algorithm to form an Adaptive and Autonomous WaveletBased Scale Space Filter (AWSSF) for Primary User (PU) sensing in CR. These combined algorithms produced an enhanced algorithm that improves detection in low SNR conditions when compared to the performance of EDs and other spectrum sensing techniques in the literature. Therefore, the AWSSF met the performance requirement of the IEEE 802.22 standard as compared to other approaches and thus considered viable for application in CR. Next, a new approach for the selection of control channel in CRAHN environment using the Ant Colony System (ACS) was proposed. The algorithm reduces the complex objective of selecting control channel from an overtly large spectrum space,to a path finding problem in a graph. We use pheromone trails, proportional to channel reward, which are computed based on received signal strength and channel availability, to guide the construction of selection scheme. Simulation results revealed ACS as a feasible solution for optimal dynamic control channel selection. Finally, a new channel hopping algorithm for the selection of a control channel in CRAHN was presented. This adopted the use of the bio-mimicry concept to develop a swarm intelligence based mechanism. This mechanism guides nodes to select a common control channel within a bounded time for the purpose of establishing communication. Closed form expressions for the upper bound of the time to rendezvous (TTR) and Expected TTR (ETTR) on a common control channel were derived for various network scenarios. The algorithm further provides improved performance in comparison to the Jump-Stay and Enhanced Jump-Stay Rendezvous Algorithms. We also provided simulation results to validate our claim of improved TTR. Based on the results obtained, it was concluded that the proposed system contributes positively to the ongoing research in CRAHN
    • …
    corecore