2,038 research outputs found

    Quickest detection in coupled systems

    Full text link
    This work considers the problem of quickest detection of signals in a coupled system of N sensors, which receive continuous sequential observations from the environment. It is assumed that the signals, which are modeled a general Ito processes, are coupled across sensors, but that their onset times may differ from sensor to sensor. The objective is the optimal detection of the first time at which any sensor in the system receives a signal. The problem is formulated as a stochastic optimization problem in which an extended average Kullback- Leibler divergence criterion is used as a measure of detection delay, with a constraint on the mean time between false alarms. The case in which the sensors employ cumulative sum (CUSUM) strategies is considered, and it is proved that the minimum of N CUSUMs is asymptotically optimal as the mean time between false alarms increases without bound.Comment: 6 pages, 48th IEEE Conference on Decision and Control, Shanghai 2009 December 16 - 1

    Quickest detection in coupled systems

    Full text link
    This work considers the problem of quickest detection of signals in a coupled system of NN sensors, which receive continuous sequential observations from the environment. It is assumed that the signals, which are modeled by general It\^{o} processes, are coupled across sensors, but that their onset times may differ from sensor to sensor. Two main cases are considered; in the first one signal strengths are the same across sensors while in the second one they differ by a constant. The objective is the optimal detection of the first time at which any sensor in the system receives a signal. The problem is formulated as a stochastic optimization problem in which an extended minimal Kullback-Leibler divergence criterion is used as a measure of detection delay, with a constraint on the mean time to the first false alarm. The case in which the sensors employ cumulative sum (CUSUM) strategies is considered, and it is proved that the minimum of NN CUSUMs is asymptotically optimal as the mean time to the first false alarm increases without bound. In particular, in the case of equal signal strengths across sensors, it is seen that the difference in detection delay of the NN-CUSUM stopping rule and the unknown optimal stopping scheme tends to a constant related to the number of sensors as the mean time to the first false alarm increases without bound. Alternatively, in the case of unequal signal strengths, it is seen that this difference tends to zero.Comment: 29 pages. SIAM Journal on Control and Optimization, forthcomin

    Attack Resilience and Recovery using Physical Challenge Response Authentication for Active Sensors Under Integrity Attacks

    Get PDF
    Embedded sensing systems are pervasively used in life- and security-critical systems such as those found in airplanes, automobiles, and healthcare. Traditional security mechanisms for these sensors focus on data encryption and other post-processing techniques, but the sensors themselves often remain vulnerable to attacks in the physical/analog domain. If an adversary manipulates a physical/analog signal prior to digitization, no amount of digital security mechanisms after the fact can help. Fortunately, nature imposes fundamental constraints on how these analog signals can behave. This work presents PyCRA, a physical challenge-response authentication scheme designed to protect active sensing systems against physical attacks occurring in the analog domain. PyCRA provides security for active sensors by continually challenging the surrounding environment via random but deliberate physical probes. By analyzing the responses to these probes, and by using the fact that the adversary cannot change the underlying laws of physics, we provide an authentication mechanism that not only detects malicious attacks but provides resilience against them. We demonstrate the effectiveness of PyCRA through several case studies using two sensing systems: (1) magnetic sensors like those found wheel speed sensors in robotics and automotive, and (2) commercial RFID tags used in many security-critical applications. Finally, we outline methods and theoretical proofs for further enhancing the resilience of PyCRA to active attacks by means of a confusion phase---a period of low signal to noise ratio that makes it more difficult for an attacker to correctly identify and respond to PyCRA's physical challenges. In doing so, we evaluate both the robustness and the limitations of PyCRA, concluding by outlining practical considerations as well as further applications for the proposed authentication mechanism.Comment: Shorter version appeared in ACM ACM Conference on Computer and Communications (CCS) 201

    Optimal Bayesian Quickest Detection for Hidden Markov Models and Structured Generalisations

    Full text link
    In this paper we consider the problem of quickly detecting changes in hidden Markov models (HMMs) in a Bayesian setting, as well as several structured generalisations including changes in statistically periodic processes, quickest detection of a Markov process across a sensor array, quickest detection of a moving target in a sensor network and quickest change detection (QCD) in multistream data. Our main result establishes an optimal Bayesian HMM QCD rule with a threshold structure. This framework and proof techniques allow us to to elegantly establish optimal rules for several structured generalisations by showing that these problems are special cases of the Bayesian HMM QCD problem. We develop bounds to characterise the performance of our optimal rule and provide an efficient method for computing the test statistic. Finally, we examine the performance of our rule in several simulation examples and propose a technique for calculating the optimal threshold

    Bayesian Quickest Detection of Propagating Spatial Events

    Full text link
    Rapid detection of spatial events that propagate across a sensor network is of wide interest in many modern applications. In particular, in communications, radar, environmental monitoring, and biosurveillance, we may observe propagating fields or particles. In this paper, we propose Bayesian single and multiple change-point detection procedures for the rapid detection of propagating spatial events. It is assumed that the spatial event propagates across a network of sensors according to the physical properties of the source causing the event. The multi-sensor system configuration is arbitrary and sensors may be mobile. We begin by considering a single spatial event and are interested in detecting this event as quickly as possible, while controlling the probability of false alarm. Using a dynamic programming framework we derive the structure of the optimal procedure, which minimizes the average detection delay (ADD) subject to a false alarm probability upper bound. In the rare event regime, the optimal procedure converges to a more practical threshold test on the posterior probability of the change point. A convenient recursive computation of this posterior probability is derived by using the propagation pattern of the spatial event. The ADD of the posterior probability threshold test is analyzed in the asymptotic regime, and specific analysis is conducted in the setting of detecting attenuating random signals. Then, we show how the proposed procedure is easy to extend for detecting multiple propagating spatial events in parallel. A method that provides false discovery rate (FDR) control is proposed. In the simulation section, it is clearly demonstrated that exploiting the spatial properties of the event decreases the ADD compared to procedures that do not utilize this information, even under model mismatch.Comment: 14 pages, 5 figure
    • …
    corecore