33 research outputs found

    The CELLmicrocosmos tools: A small history of Java-based cell and membrane modelling open source software development

    Get PDF
    For more than one decade, CELLmicrocosmos tools are being developed. Here, we discus some of the technical and administrative hurdles to keep a software suite running so many years. The tools were being developed during a number of student projects and theses, whereas main developers refactored and maintained the code over the years. The focus of this publication is laid on two Java-based Open Source Software frameworks. Firstly, the CellExplorer with the PathwayIntegration combines the mesoscopic and the functional level by mapping biological networks onto cell components using database integration. Secondly, the MembraneEditor enables users to generate membranes of different lipid and protein compositions using the PDB format. Technicalities will be discussed as well as the historical development of these tools with a special focus on group-based development. In this way, university-associated developers of Integrative Bioinformatics applications should be inspired to go similar ways. All tools discussed in this publication can be downloaded and installed from https://www.CELLmicrocosmos.org

    Exploration of Reaction Pathways and Chemical Transformation Networks

    Full text link
    For the investigation of chemical reaction networks, the identification of all relevant intermediates and elementary reactions is mandatory. Many algorithmic approaches exist that perform explorations efficiently and automatedly. These approaches differ in their application range, the level of completeness of the exploration, as well as the amount of heuristics and human intervention required. Here, we describe and compare the different approaches based on these criteria. Future directions leveraging the strengths of chemical heuristics, human interaction, and physical rigor are discussed.Comment: 48 pages, 4 figure

    Interactivity:the missing link between virtual reality technology and drug discovery pipelines

    Get PDF
    The potential of virtual reality (VR) to contribute to drug design and development has been recognised for many years. Hardware and software developments now mean that this potential is beginning to be realised, and VR methods are being actively used in this sphere. A recent advance is to use VR not only to visualise and interact with molecular structures, but also to interact with molecular dynamics simulations of 'on the fly' (interactive molecular dynamics in VR, IMD-VR), which is useful not only for flexible docking but also to examine binding processes and conformational changes. iMD-VR has been shown to be useful for creating complexes of ligands bound to target proteins, e.g., recently applied to peptide inhibitors of the SARS-CoV-2 main protease. In this review, we use the term 'interactive VR' to refer to software where interactivity is an inherent part of the user VR experience e.g., in making structural modifications or interacting with a physically rigorous molecular dynamics (MD) simulation, as opposed to simply using VR controllers to rotate and translate the molecule for enhanced visualisation. Here, we describe these methods and their application to problems relevant to drug discovery, highlighting the possibilities that they offer in this arena. We suggest that the ease of viewing and manipulating molecular structures and dynamics, and the ability to modify structures on the fly (e.g., adding or deleting atoms) makes modern interactive VR a valuable tool to add to the armoury of drug development methods.Comment: 19 pages, 3 figure

    Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future.

    Get PDF
    "Α picture is worth a thousand words." This widely used adage sums up in a few words the notion that a successful visual representation of a concept should enable easy and rapid absorption of large amounts of information. Although, in general, the notion of capturing complex ideas using images is very appealing, would 1000 words be enough to describe the unknown in a research field such as the life sciences? Life sciences is one of the biggest generators of enormous datasets, mainly as a result of recent and rapid technological advances; their complexity can make these datasets incomprehensible without effective visualization methods. Here we discuss the past, present and future of genomic and systems biology visualization. We briefly comment on many visualization and analysis tools and the purposes that they serve. We focus on the latest libraries and programming languages that enable more effective, efficient and faster approaches for visualizing biological concepts, and also comment on the future human-computer interaction trends that would enable for enhancing visualization further

    Visualization methods for analysis of 3D multi-scale medical data

    Get PDF
    [no abstract
    corecore