7 research outputs found

    Statistical Analysis and Modeling of SIP Traffic for Parameter Estimation of Server Hysteretic Overload Control, Journal of Telecommunications and Information Technology, 2013, nr 4

    Get PDF
    The problem of overload control in Session Initiation Protocol (SIP) signaling networks gives rise to many questions which attract researchers from theoretical and practical point of view. Any mechanism that is claimed to settle this problem down demands estimation of local (control) parameters on which its performance is greatly dependent. In hysteretic mechanism these parameters are those which define hysteretic loops. In order to find appropriate values for parameters one needs adequate model of SIP traffic flow circulating in the network under consideration. In this paper the attempt is made to address this issue. Analysis of SIP traffic collected from telecommunication operator’s network is presented. Traffic profile is built. It is shown that fitting with Markov Modulated Poisson Process with more than 2 phases is accurate. Estimated values of its parameters are given

    Queuing model for SIP server hysteretic overload control with bursty traffic

    No full text
    In this paper, we develop a mathematical model of a load control mechanism for SIP server signaling networks based on a hysteretic technique. We investigate loss-based overload control, as proposed in recent IETF documents. The queuing model takes into account three types of system state - normal load, overload, and discard. The hysteretic control is made possible by introducing two thresholds, L and H, in the buffer of total size R. We denote the mathematical model using the modified Kendall notation as an queue with hysteretic load control and bursty input flow. Algorithms for computation the key performance parameters of the system were obtained. A numerical example illustrating the control mechanism that minimizes the return time from overloading states satisfying the throttling and mean control cycle time constraints is also presented. © 2013 Springer-Verlag

    Queuing Model for SIP Server Hysteretic Overload Control with Bursty Traffic

    No full text

    Queuing model for SIP server hysteretic overload control with bursty traffic

    No full text
    In this paper, we develop a mathematical model of a load control mechanism for SIP server signaling networks based on a hysteretic technique. We investigate loss-based overload control, as proposed in recent IETF documents. The queuing model takes into account three types of system state - normal load, overload, and discard. The hysteretic control is made possible by introducing two thresholds, L and H, in the buffer of total size R. We denote the mathematical model using the modified Kendall notation as an queue with hysteretic load control and bursty input flow. Algorithms for computation the key performance parameters of the system were obtained. A numerical example illustrating the control mechanism that minimizes the return time from overloading states satisfying the throttling and mean control cycle time constraints is also presented. © 2013 Springer-Verlag

    Queuing model for SIP server hysteretic overload control with K-state MMPP bursty traffic

    No full text
    In this paper, we develop a mathematical model of a load control mechanism for SIP server signaling networks based on a hysteretic technique. We investigate loss-based overload control, as proposed in recent IETF documents. The queuing model takes into account three types of system state - normal load, overload, and discard. The hysteretic control is made possible by introducing two thresholds, L and H, in the buffer of total size R. We constructed an analytical model of SIP server with K-state MMPP flow, input flow and bi-level hysteretic overload control mechanism to investigate the performance indicators of a SIP server in the case of bursty input message flow. Algorithms for computation the key performance parameters of the system were introduced. A numerical example illustrating the control mechanism that minimizes the return time from overloading states satisfying the throttling and mean control cycle time constraints is also presented. © 2014 IEEE

    Queuing model for SIP server hysteretic overload control with K-state MMPP bursty traffic

    No full text
    In this paper, we develop a mathematical model of a load control mechanism for SIP server signaling networks based on a hysteretic technique. We investigate loss-based overload control, as proposed in recent IETF documents. The queuing model takes into account three types of system state - normal load, overload, and discard. The hysteretic control is made possible by introducing two thresholds, L and H, in the buffer of total size R. We constructed an analytical model of SIP server with K-state MMPP flow, input flow and bi-level hysteretic overload control mechanism to investigate the performance indicators of a SIP server in the case of bursty input message flow. Algorithms for computation the key performance parameters of the system were introduced. A numerical example illustrating the control mechanism that minimizes the return time from overloading states satisfying the throttling and mean control cycle time constraints is also presented. © 2014 IEEE
    corecore