34,960 research outputs found

    On deciding stability of multiclass queueing networks under buffer priority scheduling policies

    Full text link
    One of the basic properties of a queueing network is stability. Roughly speaking, it is the property that the total number of jobs in the network remains bounded as a function of time. One of the key questions related to the stability issue is how to determine the exact conditions under which a given queueing network operating under a given scheduling policy remains stable. While there was much initial progress in addressing this question, most of the results obtained were partial at best and so the complete characterization of stable queueing networks is still lacking. In this paper, we resolve this open problem, albeit in a somewhat unexpected way. We show that characterizing stable queueing networks is an algorithmically undecidable problem for the case of nonpreemptive static buffer priority scheduling policies and deterministic interarrival and service times. Thus, no constructive characterization of stable queueing networks operating under this class of policies is possible. The result is established for queueing networks with finite and infinite buffer sizes and possibly zero service times, although we conjecture that it also holds in the case of models with only infinite buffers and nonzero service times. Our approach extends an earlier related work [Math. Oper. Res. 27 (2002) 272--293] and uses the so-called counter machine device as a reduction tool.Comment: Published in at http://dx.doi.org/10.1214/09-AAP597 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Computationally Efficient Simulation of Queues: The R Package queuecomputer

    Get PDF
    Large networks of queueing systems model important real-world systems such as MapReduce clusters, web-servers, hospitals, call centers and airport passenger terminals. To model such systems accurately, we must infer queueing parameters from data. Unfortunately, for many queueing networks there is no clear way to proceed with parameter inference from data. Approximate Bayesian computation could offer a straightforward way to infer parameters for such networks if we could simulate data quickly enough. We present a computationally efficient method for simulating from a very general set of queueing networks with the R package queuecomputer. Remarkable speedups of more than 2 orders of magnitude are observed relative to the popular DES packages simmer and simpy. We replicate output from these packages to validate the package. The package is modular and integrates well with the popular R package dplyr. Complex queueing networks with tandem, parallel and fork/join topologies can easily be built with these two packages together. We show how to use this package with two examples: a call center and an airport terminal.Comment: Updated for queuecomputer_0.8.

    Sample path large deviations for multiclass feedforward queueing networks in critical loading

    Full text link
    We consider multiclass feedforward queueing networks with first in first out and priority service disciplines at the nodes, and class dependent deterministic routing between nodes. The random behavior of the network is constructed from cumulative arrival and service time processes which are assumed to satisfy an appropriate sample path large deviation principle. We establish logarithmic asymptotics of large deviations for waiting time, idle time, queue length, departure and sojourn-time processes in critical loading. This transfers similar results from Puhalskii about single class queueing networks with feedback to multiclass feedforward queueing networks, and complements diffusion approximation results from Peterson. An example with renewal inter arrival and service time processes yields the rate function of a reflected Brownian motion. The model directly captures stationary situations.Comment: Published at http://dx.doi.org/10.1214/105051606000000439 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Modelling multi-tier enterprise applications behaviour with design of experiments technique

    Get PDF
    Queueing network models are commonly used for performance modelling. However, through application development stage analytical models might not be able to continuously reflect performance, for example due to performance bugs or minor changes in the application code that cannot be readily reflected in the queueing model. To cope with this problem, a measurement-based approach adopting Design of Experiments (DoE) technique is proposed. The applicability of the proposed method is demonstrated on a complex 3-tier e-commerce application that is difficult to model with queueing networks

    Proportional fairness and its relationship with multi-class queueing networks

    Full text link
    We consider multi-class single-server queueing networks that have a product form stationary distribution. A new limit result proves a sequence of such networks converges weakly to a stochastic flow level model. The stochastic flow level model found is insensitive. A large deviation principle for the stationary distribution of these multi-class queueing networks is also found. Its rate function has a dual form that coincides with proportional fairness. We then give the first rigorous proof that the stationary throughput of a multi-class single-server queueing network converges to a proportionally fair allocation. This work combines classical queueing networks with more recent work on stochastic flow level models and proportional fairness. One could view these seemingly different models as the same system described at different levels of granularity: a microscopic, queueing level description; a macroscopic, flow level description and a teleological, optimization description.Comment: Published in at http://dx.doi.org/10.1214/09-AAP612 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Non-Existence of Stabilizing Policies for the Critical Push-Pull Network and Generalizations

    Get PDF
    The push-pull queueing network is a simple example in which servers either serve jobs or generate new arrivals. It was previously conjectured that there is no policy that makes the network positive recurrent (stable) in the critical case. We settle this conjecture and devise a general sufficient condition for non-stabilizability of queueing networks which is based on a linear martingale and further applies to generalizations of the push-pull network.Comment: 14 pages, 3 figure

    Concave Switching in Single and Multihop Networks

    Full text link
    Switched queueing networks model wireless networks, input queued switches and numerous other networked communications systems. For single-hop networks, we consider a {(α,g\alpha,g)-switch policy} which combines the MaxWeight policies with bandwidth sharing networks -- a further well studied model of Internet congestion. We prove the maximum stability property for this class of randomized policies. Thus these policies have the same first order behavior as the MaxWeight policies. However, for multihop networks some of these generalized polices address a number of critical weakness of the MaxWeight/BackPressure policies. For multihop networks with fixed routing, we consider the Proportional Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is maximum stable, but must maintain a queue for every route-destination, which typically grows rapidly with a network's size. However, this proportionally fair policy only needs to maintain a queue for each outgoing link, which is typically bounded in number. As is common with Internet routing, by maintaining per-link queueing each node only needs to know the next hop for each packet and not its entire route. Further, in contrast to BackPressure, the Proportional Scheduler does not compare downstream queue lengths to determine weights, only local link information is required. This leads to greater potential for decomposed implementations of the policy. Through a reduction argument and an entropy argument, we demonstrate that, whilst maintaining substantially less queueing overhead, the Proportional Scheduler achieves maximum throughput stability.Comment: 28 page
    corecore