34,960 research outputs found
On deciding stability of multiclass queueing networks under buffer priority scheduling policies
One of the basic properties of a queueing network is stability. Roughly
speaking, it is the property that the total number of jobs in the network
remains bounded as a function of time. One of the key questions related to the
stability issue is how to determine the exact conditions under which a given
queueing network operating under a given scheduling policy remains stable.
While there was much initial progress in addressing this question, most of the
results obtained were partial at best and so the complete characterization of
stable queueing networks is still lacking. In this paper, we resolve this open
problem, albeit in a somewhat unexpected way. We show that characterizing
stable queueing networks is an algorithmically undecidable problem for the case
of nonpreemptive static buffer priority scheduling policies and deterministic
interarrival and service times. Thus, no constructive characterization of
stable queueing networks operating under this class of policies is possible.
The result is established for queueing networks with finite and infinite buffer
sizes and possibly zero service times, although we conjecture that it also
holds in the case of models with only infinite buffers and nonzero service
times. Our approach extends an earlier related work [Math. Oper. Res. 27 (2002)
272--293] and uses the so-called counter machine device as a reduction tool.Comment: Published in at http://dx.doi.org/10.1214/09-AAP597 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Computationally Efficient Simulation of Queues: The R Package queuecomputer
Large networks of queueing systems model important real-world systems such as
MapReduce clusters, web-servers, hospitals, call centers and airport passenger
terminals. To model such systems accurately, we must infer queueing parameters
from data. Unfortunately, for many queueing networks there is no clear way to
proceed with parameter inference from data. Approximate Bayesian computation
could offer a straightforward way to infer parameters for such networks if we
could simulate data quickly enough.
We present a computationally efficient method for simulating from a very
general set of queueing networks with the R package queuecomputer. Remarkable
speedups of more than 2 orders of magnitude are observed relative to the
popular DES packages simmer and simpy. We replicate output from these packages
to validate the package.
The package is modular and integrates well with the popular R package dplyr.
Complex queueing networks with tandem, parallel and fork/join topologies can
easily be built with these two packages together. We show how to use this
package with two examples: a call center and an airport terminal.Comment: Updated for queuecomputer_0.8.
Sample path large deviations for multiclass feedforward queueing networks in critical loading
We consider multiclass feedforward queueing networks with first in first out
and priority service disciplines at the nodes, and class dependent
deterministic routing between nodes. The random behavior of the network is
constructed from cumulative arrival and service time processes which are
assumed to satisfy an appropriate sample path large deviation principle. We
establish logarithmic asymptotics of large deviations for waiting time, idle
time, queue length, departure and sojourn-time processes in critical loading.
This transfers similar results from Puhalskii about single class queueing
networks with feedback to multiclass feedforward queueing networks, and
complements diffusion approximation results from Peterson. An example with
renewal inter arrival and service time processes yields the rate function of a
reflected Brownian motion. The model directly captures stationary situations.Comment: Published at http://dx.doi.org/10.1214/105051606000000439 in the
Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute
of Mathematical Statistics (http://www.imstat.org
Modelling multi-tier enterprise applications behaviour with design of experiments technique
Queueing network models are commonly used for performance modelling. However, through application development stage analytical models might not be able to continuously reflect performance, for example due to performance bugs or minor changes in the application code that cannot be readily reflected in the queueing model. To cope with this problem, a measurement-based approach adopting Design of Experiments (DoE) technique is proposed. The applicability of the proposed method is demonstrated on a complex 3-tier e-commerce application that is difficult to model with queueing networks
Proportional fairness and its relationship with multi-class queueing networks
We consider multi-class single-server queueing networks that have a product
form stationary distribution. A new limit result proves a sequence of such
networks converges weakly to a stochastic flow level model. The stochastic flow
level model found is insensitive. A large deviation principle for the
stationary distribution of these multi-class queueing networks is also found.
Its rate function has a dual form that coincides with proportional fairness. We
then give the first rigorous proof that the stationary throughput of a
multi-class single-server queueing network converges to a proportionally fair
allocation. This work combines classical queueing networks with more recent
work on stochastic flow level models and proportional fairness. One could view
these seemingly different models as the same system described at different
levels of granularity: a microscopic, queueing level description; a
macroscopic, flow level description and a teleological, optimization
description.Comment: Published in at http://dx.doi.org/10.1214/09-AAP612 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Non-Existence of Stabilizing Policies for the Critical Push-Pull Network and Generalizations
The push-pull queueing network is a simple example in which servers either
serve jobs or generate new arrivals. It was previously conjectured that there
is no policy that makes the network positive recurrent (stable) in the critical
case. We settle this conjecture and devise a general sufficient condition for
non-stabilizability of queueing networks which is based on a linear martingale
and further applies to generalizations of the push-pull network.Comment: 14 pages, 3 figure
Concave Switching in Single and Multihop Networks
Switched queueing networks model wireless networks, input queued switches and
numerous other networked communications systems. For single-hop networks, we
consider a {()-switch policy} which combines the MaxWeight policies
with bandwidth sharing networks -- a further well studied model of Internet
congestion. We prove the maximum stability property for this class of
randomized policies. Thus these policies have the same first order behavior as
the MaxWeight policies. However, for multihop networks some of these
generalized polices address a number of critical weakness of the
MaxWeight/BackPressure policies.
For multihop networks with fixed routing, we consider the Proportional
Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is
maximum stable, but must maintain a queue for every route-destination, which
typically grows rapidly with a network's size. However, this proportionally
fair policy only needs to maintain a queue for each outgoing link, which is
typically bounded in number. As is common with Internet routing, by maintaining
per-link queueing each node only needs to know the next hop for each packet and
not its entire route. Further, in contrast to BackPressure, the Proportional
Scheduler does not compare downstream queue lengths to determine weights, only
local link information is required. This leads to greater potential for
decomposed implementations of the policy. Through a reduction argument and an
entropy argument, we demonstrate that, whilst maintaining substantially less
queueing overhead, the Proportional Scheduler achieves maximum throughput
stability.Comment: 28 page
- …
