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ABSTRACT 

Queueing network models are commonly used for performance 

modelling. However, through application development stage 

analytical models might not be able to continuously reflect 

performance, for example due to performance bugs or minor 

changes in the application code that cannot be readily reflected in 

the queueing model. To cope with this problem, a measurement-

based approach adopting Design of Experiments (DoE) technique 

is proposed. The applicability of the proposed method is 

demonstrated on a complex 3-tier e-commerce application that is 

difficult to model with queueing networks. 

Categories and Subject Descriptors 

C.2.4, C.4, D.2.8, D.4.8 

Keywords 

Multi-tier enterprise applications, design of experiments, two-

level factorial designs, response surface models, linear regression, 

software performance testing 

1. INTRODUCTION 
DevOps is defined as a set of practices and principles 

bridging the gap between application development and operation 

stages [8]. One way to achieve this is continuous application 

performance modelling and prediction combined with automated 

feedback of the models to the developer and their update via 

continuous testing. A large body of work exists that employs 

Machine Learning algorithms [9] and tools, as well as linear 

regression, to obtain performance models based on 

measurements. In this paper we propose application performance 

modelling and prediction algorithm based on the Design of 

Experiments (DoE) technique. 

DoE – widely used in engineering and industry for 

optimising processes – looks very promising for the use in 

DevOps, as it utilises measurements obtained at runtime to build 

performance models. These models can be fed to the application 

developer and updated in an automated way through continuous 

testing. However, its use is rather sparse in computer science, 

especially in the area of application performance modelling and 

prediction. This technique involves choosing a number of input 

parameters called ‘factors’, designing a set of experiments and 

then carrying them out on the system-under-study. The 

experiment results, called ‘response variables’, are then used to 

construct linear regression model representing a relationship 

between system output (‘response variable’) and inputs (factors). 

In this approach system under study is treated as a black box. 

A number of studies exist that explore the capabilities of 

the DoE technique and DoE-based models in performance 

modelling, evaluation and prediction. Li et al. [4] presented a 

factor framework for performance evaluation of commercial 

Cloud services.  This framework establishes factors that are 

currently used in the performance evaluation of clouds and can 

help facilitate designing new experiments for evaluating cloud 

services. However, this work does not provide any quantitative or 

qualitative assessment allowing to conclude which of these 

factors may be important for software performance testing. 

Westerman et al. [10] apply statistical inference techniques 

to adaptively select experiments resulting in the optimal 

performance model. The approach automatically selects and 

conducts experiments based on the accuracy observed for the 

models inferred from the currently available data. The results 

demonstrate that this approach can automatically infer a 

prediction model with a mean relative error of 1.6% using only 

18% of the measurement points in the configuration space. 

However, this work is focused only on the design of experiments 

and does not investigate predictive capabilities of the obtained 

model. 

Molka and Casale [in revision] applied DoE techniques to 

generate response surfaces (non-linear models constructed using 

linear regression) that describe database performance as a 

function of workload and hardware parameters for in-memory 

databases. The response variables this study reported include 

response times, server utilisation, energy consumption and 

memory occupancy. They found out that the queueing network 

and response surface models yield mean prediction errors in the 

range 5%-22% with respect to response times and mean memory, 

but the accuracy for the latter deteriorates in response surfaces as 

the number of experiments are reduced, whereas model-based 

simulation is effective in all cases. This suggests that simulation 

can be more effective in performance prediction for in-memory 

database management. However, this queueing network model 

was tailored to describe in-memory database, which required 

significant effort and knowledge of the system under study. 

The proposed method described in details in the following 

sections is based on the design of experiments technique, which is 

first used to establish the design space (screening procedure) – a 

set of factors and their low and upper bounds – that influence 

response variable(s). Then a linear regression is used to construct 

a model describing relationship between input parameters and 

performance metrics based on the experiment results obtained 

 



during the screening. Afterwards, the model prediction accuracy 

is assessed. Additionally, the model prediction error is then 

compared to prediction made by the out-of-the-box Mean Value 

Analysis algorithm for queueing network models. To the best of 

our knowledge none of the work presented in this paper has been 

done before. 

The rest of the paper is organised as follows. Section 2 

presents the methodology of the proposed approach; Section 3 is 

dedicated to the case study – load simulation for the web-based e-

commerce 3-tiered application; Section 4 provides analysis of the 

model prediction accuracy and discussion of the analysis results; 

Section 5 draws conclusions and gives suggestions for further 

work. 
 

2. METHODOLOGY 
Design of Experiments (DoE) starts with determining the 

objectives of an experiment and selecting the factors for the 

study. The choice of the experimental design would influence the 

amount of runs required to obtain sufficient information about 

system under test [1]. For example, if software performance tester 

is interested only in identifying the parameters that significantly 

influence application’s performance, then two-level factorial 

design would suffice. The objective in this case would be to find 

out parameters (factors) that cause significant change in the 

output by shifting from one (low) level to another (high). 

Additionally, because in order to investigate all possible 

combinations of levels, 2k runs (where k = number of factors in 

the experimental design) would be needed, the so-called 

fractional factorial designs are often used, where only a part 

(fraction) of the 2k (full factorial) design is used. These designs, 

however, should be treated with care, as they are constructed 

under a number of assumptions, which may not hold for the given 

system.  

Two-level factorial designs are also widely used for 

construction of linear regression models, but their use implies that 

relationship between system inputs and output is linear. If there is 

a chance that this relationship is not linear, other designs, 

allowing to construct polynomial regression models (e.g. 

Response Surface Methodology), might be considered instead. 

Therefore, it can be summarised that well-chosen experimental 

design would involve minimum possible number of runs required 

to obtain necessary information about the system under test. Also 

on this step response variables should be agreed on. 

Taking into consideration everything said above, the 

following actions are needed to implement the method: 
 

a) Define response variables: those would be performance 

metrics (e.g. response time, CPU utilisation, throughput); 

b) Create design space via screening for important factors and 

their interactions using two-level fractional factorial design: 

choose a number of factors that might influence 

performance metrics, set the low and high levels for them 

(the levels are chosen based on the experimenter’s 

experience and knowledge of the system).  

c) Validate results of the screening with full factorial design 

for the chosen subset of important factors (may or may not 

require additional runs) and allocation of variation [7]. 

Allocation of variation shows how much variation each of 

the factors causes in the response variable when changed 

from low to high level.  

d) Construct linear regression model based on the experiment 

results from b) and c) (may or may not require additional 

runs). 

3. CASE STUDY 

3.1 Objective 
The objective of this case study is to build the model 

allowing to describe and predict performance of the web-based 3-

tier e-commerce application following the methodology presented 

in the Section 2. The outputs (response variables) considered are 

application response time and CPU utilisation. 

3.2 Test Environment 

3.2.1 Testbed Description 
The testbed consists of workload generator syntactically 

generating requests to a backend web-based application.  

Experiments in this study were performed using model-driven 

workload generator called MDLoad [5]. MDload automatically 

generates requests to an application under test by simulating a set 

of users. Since the workload generator needs to create 

considerable number of virtual users, MDLoad was deployed on a 

Virtual Machine (VM) with 12 CPU and 3GB of memory. This 

VM is located on the private cloud at Imperial College London.  

The hosts of the private cloud are Intel Xeon with CPU E5-2450 

2.10 GHz. The capacity of the VM machine was chosen based on 

the previous experience with MDload such a way that relatively 

small number of users would saturate the application, resulting in 

significant increase in application response time and CPU 

utilization, but not leading to the MDload outage. This decision 

allowed to reduce execution time needed for each experimental 

run while still obtaining sufficient samples to estimate mean 

values of performance metrics. 

The software stack of workload generator comprises JAVA 

and shell scripts for submitting HTTP requests and controlling the 

behaviour of virtual users by creating session-based workload. 

The request composition of the sessions for the three MDload 

user classes adopted in this study is shown in Table 1: 

 

Table 1: Request mix per session for 3 MDload user classes. 

Request 
Class I 

(light) 

Class II 

(medium) 

Class 

III* 

(heavy) 

Home + + + 

Login + + + 

Login details + + + 

Main  + + 

Order History  + + 

QuickAddMain  + + 

CartAddAll  + + 

Checkout  + + 

CheckoutAddressNext  + + 

CheckoutPaymentNext  + + 

CheckoutShippingNext  + + 

Logout + + + 

*Class III has higher number of Checkout requests per session than Class 

II 

3.2.2 Application Under Test 
The application under test is Apache OFBiz [6] - an open 

source  web-based  e-commerce system.  The OFBiz instance is 

http://www.itl.nist.gov/div898/handbook/pri/section3/pri31.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri32.htm


deployed on a VM with 1 CPU and 3GB of memory on the same 

private cloud at Imperial College London. Keeping both workload 

generator and backend application on the hosts in the same 

private cloud and connected through high-speed broadband 

network allows to remove ‘noise’ in the system response time 

(collected on the MDload side using tool’s features) caused by 

network latencies. Therefore, measurements for the system 

response time can be considered response time on the application 

level. 
 

3.3 Screening Procedure 
There are a number of parameters (in DoE known as 

‘factors’) that might influence application performance. These 

may be external inputs, such as, for example, number of users, 

user think time, or system parameters (e.g. hardware 

configuration on which application is deployed). Such parameters 

may be controllable (can be changed by the experimenter) and 

uncontrollable. For example, network delay, mentioned above, 

can be viewed as the noise factor, influencing response time as it 

is experienced by the user. An extensive taxonomy of factors is 

given in [4]. However, to explore all possible combinations of 

these factors would require 2k experimental runs, as was 

mentioned in the Section 2. In the example from [4] that would be 

238=274x109 runs, which is, of course, infeasible. Therefore, not 

only fractional factorial design is needed, but also careful 

consideration for the choice of the candidate factors for the 

screening procedure, based on the experience of the experimenter. 

In this study it was decided to start with a small set of well-

known factors, such as number of users, user think time and 

workload mix. Additionally it was tested if the testbed set up 

described in 3.2.1 would allow to decrease execution time of the 

experimental run without causing deterioration of estimates. The 

low and high levels for the number of users were chosen based on 

the N*, where N*, following the definition from [3] is the point 

where application starts exhibiting saturation behaviour. Levels 

for other factors for the two-level design were chosen based on 

the authors’ experience with application load testing and MDload. 

The summary of factors and their levels chosen for the screening 

procedure is given in the Table 2. 
 

Table 2: Factors and their levels. 

 
Levels 

Low (-1) High (1) 

Number of users* 3** 20 

User think time, s 10 1 

Execution time, 

min (steady state) 
10 30 

Workload mix 

(user class) 
I III 

*  N*=16 for user think time = 5 s. 

** N_users = 3 instead of 1 is chosen to obtain more samples for 

averaging. 
 

To investigate all possible combinations of these four 

factors would require 24=16 runs, which is theoretically feasible, 

but with half of the runs requiring execution for 30 minutes it 

would take 5 h 20 min. Therefore it was decided to use fractional 

factorial design in line with the commonly-used procedure. It is 

important to note, though, that the price for the reduction in runs 

is so-called confounding of effects. This means that the effects 

(factors and their interactions) estimated based on the results of 

fractional factorial design are a combination of two or more 

effects. Hence it is important to choose fractional factorial design 

in such a way so that main effects are confounded with higher-

order interactions. The higher-order interactions (interactions of 

N-1 factors in design for N factors) are generally considered 

negligible. The fractional factorial design of resolution IV (all 

main effects will be confounded with higher-order interactions, 

low order interactions will be confounded with each other) for the 

example data from Table 2 along with the confounding pattern is 

presented in Table 3: 

 

Table 3: Fractional factorial design for four factors. 

Exp. 

run 

Number 

of users 

(A) 

Think 

time 

(B), s 

Execution 

time (C), 

min 

User 

class 

(D) 

Confounding 

pattern 

1 3 10 10 I I=I+ABCD 

A = A + BCD 

B = B + ACD 

C = C + ABD 

D = D + ABC 

AB = AB + CD 

AC = AC + BD 

AD = AD + BC 

2 3 10 30 III 

3 3 1 10 III 

4 3 1 30 I 

5 20 10 10 III 

6 20 10 30 I 

7 20 1 10 I 

8 20 1 30 III 
 

As was mentioned above, higher-order interactions are 

considered negligible. Therefore, based on the results of the 

experimental runs it should be possible to make conclusion about 

significance of main effects (significance of interactions should 

be treated carefully as they are confounded with each other). 

Response variables response time and CPU utilisation, 

obtained in the screening experiments can be analysed graphically 

(numerical analysis such as ANOVA or p-values is not 

recommended because of confounding). Example analysis for the 

response time is shown in the Figures 1 and 2.  

 

A C

C

A D

B

A B

D

A

5 0 0 04 0 0 03 0 0 02 0 0 01 0 0 00

T
e

r
m

Ef fe c t

4 5 8 2

A N  u s e rs

B T h in k  t im e

C E xe cu t io n  t im e

D W o rk lo a d  m ix

F a c to r N a m e

P a r e to  C h a r t  o f  th e  E f f e c ts

( r e s p o n s e  is  C 9 , A lp h a  =  0 ,0 5 )

Le n th 's  P S E  =  1 2 1 7 ,2 5

 
 

Figure 1. Ranking of effects. 

 

On the Figure 1 estimated effects are ranked by their 

magnitude. Red line represents Lenth’s PSE – pseudo-standard 

error. All effects that cross this line are deemed significant. From 

the Figure 1 it is obvious that none of the factors are deemed 

significant, which is suspicious, because from the Figure 2 it is 

seen that at least number of users, think time and workload mix 

make an impact on the response time. To investigate this problem 

8 more runs were conducted to create a full factorial design for 4 

factors. The results (for the response time) of the full factorial 

design for 4 factors are shown on Figure 3. 
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Figure 2. Main effects plot. 
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Figure 3. Ranking of effects. 

 
 

It is clearly seen from the Figure 3 that number of users is 

significant, user class is close to significance, as well as the 

interaction between number of users and think time. Additionally, 

it can be seen that high-order interactions ABD and BCD (and 

even ABC) are not negligible as had been assumed.  This resulted 

in the distortion of main effects and the value of Lenth’s PSE, 

which is based on the effects’ magnitudes. In the case of 4 

factors, where at least two of them turned out to be significant 

(number of users and workload mix) as well as the two-way 

interaction for the third factor(think time), the combined influence 

ABD of these three factors turned out to be large. Such 

occurrence can be mitigated by screening for large number of 

factors, especially with deliberate addition of factors which 

should not be significant, because then there is a small chance 

that combined interaction of, e.g., 5 factors for 6-factor design 

would be present.  

After screening test is conducted, and significant main 

effects are found, the full factorial design with replications should 

be conducted for this subset. If there are significant interactions 

(or close to significance), the factors that cause them also should 

be included into full factorial design, even if they themselves 

were not identified as significant. In the example think time (B) 

would be taken into the subset of significant factors, even though 

it is on itself wasn’t flagged as significant, because the interaction 

AB (between number of users and think time) is very large. 

Execution time did not show any significant influence either on 

response time or CPU utilisation, therefore it was set at the low 

level (10 minutes). The full factorial design with 3 replications 

and response variables are presented in the Table 4. This design is 

needed to validate analysis conducted on the fractional factorial 

design stage and required 4 additional runs (2, 3, 5 and 8). 

 
 

Table 4: Full factorial design for 3 factors. 

Exp. run N_users 
Think time, 

s 
User class 

(D) 

Execution 

time, min 

1 3 10 I 10 

2 3 10 III 10 

3 3 1 I 10 

4 3 1 III 10 

5 20 10 I 10 

6 20 10 III 10 

7 20 1 I 10 

8 20 1 III 10 
 

The analysis of results confirmed that all three factors, as 

most of their low-order interactions were significant. Additional 

analysis was conducted to estimate the allocation of variation: 

how much variation each of the factors causes in the response 

variable when changed from low to high level [7]. Variation of 

responses (in %) due to factors and their interactions is shown in 

Table 5: 

 

Table 5: Variation of responses (in %) due to factors and their 

interactions. 

Effect Response time CPU utilisation 

N_users 26.03 54.27 

Think time 4.53 42.99 

User class 36.25 1.14 

N_users:Think time 19.13 0.59 

N users:User class 6.63 7.886*10-6 

Think time:User class 1.5x10-8 1.8917*10-4 

N_users:Think time: 

User class 
5.42 0.91 

Error 2.01 7.6946*10-4 

 

Error term in the Table 5 contains both random error and 

influence of any factors that were not considered when 

constructing screening design. As this error term is very small for 

both response variables, it is safe to assume that all major sources 

of variation were identified. 

 

3.4 Constructing the Model 
As both response time and CPU utilization exhibit non-

linear behaviour, Response Surface (RS) design, namely central-

composite Box-Wilson design, was chosen. This design contains 

full factorial design for 3 factors and centre points, therefore can 

be used to construct both linear, quadratic and polynomial 

models. Additionally, the ‘faced’ configuration of the design was 

implemented. This configuration does not use points outside of 

the design space. The prediction capabilities of the model 

constructed based on this design can be worse than of a 

combination using the points outside the design space, but in our 

case this combination is impossible to implement (we can’t go 

beyond user classes I and III). This design requires 24 runs in 

total (centre points are run 10 times to allow for a more uniform 

estimate of the prediction variance over the design space). The 

design is shown in the Table 6 (shaded area shows full factorial 

design): 



Table 6: Box-Wilson central composite ‘faced’ design. 

N 1 2 3 4 5 6 7 8 9 10 11 12 

X1 -1 -1 -1 -1 1 1 1 1 -1 1 0 0 

X2 -1 -1 1 1 -1 -1 1 1 0 0 -1 1 

X3 -1 1 -1 1 -1 1 -1 1 0 0 0 0 

N 13 14 15 16 17 18 19 20 21 22 23 24 

X1 0 0 0 0 0 0 0 0 0 0 0 0 

X2 0 0 0 0 0 0 0 0 0 0 0 0 

X3 -1 1 0 0 0 0 0 0 0 0 0 0 
 

As was mentioned above, chosen RS design allows to 

construct various types of regression models. We want to 

investigate how they fare in prediction. Summary of the 

constructed regression models is given in the Table 7: 
 

Table 7: Regression models constructed from the experiment 

results and used in subsequent analysis. 

Name Description Formula 

Linear 

Model contains an intercept 

and linear terms for each 

factor 

y=I+a1x1+a2x2+ 

+a3x3 

Interactions 

Model contains an intercept, 

linear terms, and all products 

of pairs of distinct factors 

y=I+a1x1+a2x2+ 

+a3x3+a4x1:x2+ 

+a5x1:x3+a6x2:x3 

Pure 

Quadratic 

Model contains an intercept, 

linear terms, and squared 

terms 

y=I+a1x1+a2x2+ 

+a3x3+a4x1
2+ 

+a5x2
2+a6x3

2 

Quadratic 

Model contains an intercept, 

linear terms, interactions, and 

squared terms 

y=I+a1x1+a2x2+ 

+a3x3+a4x1:x2+ 

+a5x1:x3+a6x2:x3+ 

+a7x1
2+a8x2

2+a9x3
2 

Full 

Polynomial 

Model is a polynomial with 

all terms up to degree 3 in the 

first factor, degree 3 in the 

second factor, and degree 3 in 

the third factor* 

y=I+a1x1+a2x2+ 

+a3x3+a4x1:x2+ 

+a5x1:x3+a6x2:x3+ 

+a7x1:x2:x3+a8x1
2++a

9x2
2+a10x3

2+ 

+a11x1
2:x2+ 

+a12x1:x2
2+ +a13x1

2:x3 

*x3 terms are zero, the third level was chosen to include 3-way interaction 

between number of users, think time and user class into the model. 

 

Prediction curves R=f(N users) and U_cpu=f(N users) were 

constructed for each model type for every combination of user 

class and user think time. As an example, the curves for ‘full 

polynomial’ model type and user class III are shown in the 

Figures 4 and 5. 

 

 

Figure 4. Prediction for the response time. 

 

Figure 5. Prediction for CPU utilization. 

 

4. ANALYSIS AND DISCUSSION 

4.1 Collect Independent Observations. 
In order to assess the model prediction capabilities, a series 

of experiments with parameter values from the design space was 

run. One experiment point was run per each prediction, i.e. pair 

{User think time, user class}, for N users = 16. The points 

collected for the model verification are given in the Table 8: 

 

Table 8: Independent observations. 

Think 

time, s 

User class I User class II User class III 

RT, s 
Ucpu,

% 
RT, s 

Ucpu,

% 
RT, s 

Ucpu,

% 

10 0.79 31.8 2.72 33.1 2.7 39.8 

7.5 0.83 41.0 3.14 39.9 2.02 37.0 

5 0.88 50.7 2.72 53.5 2.00 67.0 

2.5 1.29 76.1 2.03 77.8 2.83 64.8 

1 1.43 80.1 2.91 80.99 3.71 92.0 

 

4.2 Prediction Accuracy. 
Prediction error for each {User think time, user class} pair 

is defined as a relative standard error 

 

where Y is an observation and  is predicted value. Accuracy of 

prediction for the entire model is estimated as a standard 

deviation of the sum of squares of prediction errors 

 

where N = 15 (3 user classes, 5 think time values (1, 2.5, 5, 7.5 

and 10 s)) and P = 4 (intercept and 3 independent variables). 

 

Additionally, these observations were compared to the 

prediction based on the out-of-the-box Mean Value Analysis 

(MVA) algorithm for queueing network models, implemented in 

the Java Modelling Tool [2].  

Total prediction error and estimation bias (average of all 

differences between observed and predicted values, not their 

absolute values) for response time and CPU utilisation for each 



model type, full factorial design (FF) for 3 factors and MVA 

prediction are summarized in the Table 9: 

 

Table 9: Total prediction error and bias for various model 

types. 

 Total prediction 

error σ, % 
Bias, % 

RT CPU  RT CPU  

Response 

Surface 

models 

Linear 6.51 4.3 -3.62 -0.75 

Interactions 6.32 4.09 -2.6 -0.65 

Pure 

quadratic 
5.11 4.93 -2.02 -0.79 

Quadratic 5.42 4.09 -1.0 -0.69 

Full 

polynomial 
5.12 4.06 -1.97 -0.96 

FF  6.896 3.987 -4.96 -0.32 

MVA  40.0 11.4 -234.6 7.29 

 

From the Table 9 it may be seen that prediction error σ for 

the response time is a bit higher in the case of linear models 

(‘linear’, ‘interactions’ and full factorial design), which is to be 

expected since relationship between number of users and response 

time is not linear. As for the CPU utilization, all DoE models 

showed error 4-5%. This may be explained by the fact that within 

most of the design space CPU utilization increases linearly with 

increase in the number of users. However, prediction by MVA 

algorithm produced the error of 40% for the response time.  

In order to investigate this phenomenon, we looked into 

independent observations and predicted values obtained from 

both DoE models and MVA algorithm. From the Table 8 and 

Figure 4 it may be seen that for the response time both observed 

and predicted response times do not follow classical trend of 

monotonous increase with decrease in user think time [3]. The 

comparison between independent observations, DoE RS ‘full 

polynomial’ model and MVA algorithm predictions, along with 

prediction errors (on the example for the user class III) are 

presented in the Table 10. Comparison of results in Table 10 

revealed that both independent observations and values, predicted 

by RS model, follow the same trend. It indicates that there is 

some persistent (i.e. constantly present) behaviour, which RS 

model, having no knowledge of the system under test, however, is 

able to capture based only on the application inputs and outputs. 

MVA algorithm also captures this trend, however, it  drastically 

overestimates response time values. 

 

Table 10: Trend for response time (s) in predicted values and 

observations. 

 
User think time, s 

10 7.5 5 2.5 1 

Observed 2.7 2.02 1.9 2.8 3.7 

RS model 2.66 2.33 2.39 2.84 3.67 

Error,% 1.1 -15.3 -25.8 -1.4 0.8 

MVA 33 24.9 25.5 43.8 58.4 

Error, % -1122 -1124 -1216 -1464 -1478 

 

All RS models demonstrate negative bias, which means 

that overall prediction tends to overestimate both response time 

and CPU utilisation, except MVA algorithm, which 

underestimates CPU utilisation. 

 

5. CONCLUSIONS AND FUTURE WORK 
This study highlighted the importance of software 

performance modelling and prediction, identified existing gap in 

the knowledge and proposed a new performance modelling 

approach, based on the Design of Experiments technique. 

The results demonstrate that proposed method produces 

good prediction of an application performance while treating it as 

a black box, even in the presence of an anomalous behaviour. 

Additionally, it showed much better prediction capabilities 

compared to the out-of-the box Queuing Network model. This 

allows to suggest that proposed method may be used for the 

performance modelling and prediction on the application 

development stage, where models based on measurements may be 

a better alternative as they provide a good trade-off between 

efforts required for model specification and accuracy of 

estimation and prediction. 

Considering the study outcomes, some of the directions for 

further work may be investigation of the approach predictive 

capabilities in multiclass models and as a tool for anomaly 

detection. 
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