
Modelling Multi-tier Enterprise Applications Behaviour
with Design of Experiments Technique

Tatiana Ustinova
Imperial College London

Exhibition road, South Kensington
London, UK, SW7 2AZ

tatiana.ustinova12@imperial.ac.uk

Pooyan Jamshidi
Imperial College London

Exhibition road, South Kensington
London, UK, SW7 2AZ

p.jamshidi@imperial.ac.uk

ABSTRACT

Queueing network models are commonly used for performance

modelling. However, through application development stage

analytical models might not be able to continuously reflect

performance, for example due to performance bugs or minor

changes in the application code that cannot be readily reflected in

the queueing model. To cope with this problem, a measurement-

based approach adopting Design of Experiments (DoE) technique

is proposed. The applicability of the proposed method is

demonstrated on a complex 3-tier e-commerce application that is

difficult to model with queueing networks.

Categories and Subject Descriptors

C.2.4, C.4, D.2.8, D.4.8

Keywords

Multi-tier enterprise applications, design of experiments, two-

level factorial designs, response surface models, linear regression,

software performance testing

1. INTRODUCTION
DevOps is defined as a set of practices and principles

bridging the gap between application development and operation

stages [8]. One way to achieve this is continuous application

performance modelling and prediction combined with automated

feedback of the models to the developer and their update via

continuous testing. A large body of work exists that employs

Machine Learning algorithms [9] and tools, as well as linear

regression, to obtain performance models based on

measurements. In this paper we propose application performance

modelling and prediction algorithm based on the Design of

Experiments (DoE) technique.

DoE – widely used in engineering and industry for

optimising processes – looks very promising for the use in

DevOps, as it utilises measurements obtained at runtime to build

performance models. These models can be fed to the application

developer and updated in an automated way through continuous

testing. However, its use is rather sparse in computer science,

especially in the area of application performance modelling and

prediction. This technique involves choosing a number of input

parameters called ‘factors’, designing a set of experiments and

then carrying them out on the system-under-study. The

experiment results, called ‘response variables’, are then used to

construct linear regression model representing a relationship

between system output (‘response variable’) and inputs (factors).

In this approach system under study is treated as a black box.

A number of studies exist that explore the capabilities of

the DoE technique and DoE-based models in performance

modelling, evaluation and prediction. Li et al. [4] presented a

factor framework for performance evaluation of commercial

Cloud services. This framework establishes factors that are

currently used in the performance evaluation of clouds and can

help facilitate designing new experiments for evaluating cloud

services. However, this work does not provide any quantitative or

qualitative assessment allowing to conclude which of these

factors may be important for software performance testing.

Westerman et al. [10] apply statistical inference techniques

to adaptively select experiments resulting in the optimal

performance model. The approach automatically selects and

conducts experiments based on the accuracy observed for the

models inferred from the currently available data. The results

demonstrate that this approach can automatically infer a

prediction model with a mean relative error of 1.6% using only

18% of the measurement points in the configuration space.

However, this work is focused only on the design of experiments

and does not investigate predictive capabilities of the obtained

model.

Molka and Casale [in revision] applied DoE techniques to

generate response surfaces (non-linear models constructed using

linear regression) that describe database performance as a

function of workload and hardware parameters for in-memory

databases. The response variables this study reported include

response times, server utilisation, energy consumption and

memory occupancy. They found out that the queueing network

and response surface models yield mean prediction errors in the

range 5%-22% with respect to response times and mean memory,

but the accuracy for the latter deteriorates in response surfaces as

the number of experiments are reduced, whereas model-based

simulation is effective in all cases. This suggests that simulation

can be more effective in performance prediction for in-memory

database management. However, this queueing network model

was tailored to describe in-memory database, which required

significant effort and knowledge of the system under study.

The proposed method described in details in the following

sections is based on the design of experiments technique, which is

first used to establish the design space (screening procedure) – a

set of factors and their low and upper bounds – that influence

response variable(s). Then a linear regression is used to construct

a model describing relationship between input parameters and

performance metrics based on the experiment results obtained

during the screening. Afterwards, the model prediction accuracy

is assessed. Additionally, the model prediction error is then

compared to prediction made by the out-of-the-box Mean Value

Analysis algorithm for queueing network models. To the best of

our knowledge none of the work presented in this paper has been

done before.

The rest of the paper is organised as follows. Section 2

presents the methodology of the proposed approach; Section 3 is

dedicated to the case study – load simulation for the web-based e-

commerce 3-tiered application; Section 4 provides analysis of the

model prediction accuracy and discussion of the analysis results;

Section 5 draws conclusions and gives suggestions for further

work.

2. METHODOLOGY
Design of Experiments (DoE) starts with determining the

objectives of an experiment and selecting the factors for the

study. The choice of the experimental design would influence the

amount of runs required to obtain sufficient information about

system under test [1]. For example, if software performance tester

is interested only in identifying the parameters that significantly

influence application’s performance, then two-level factorial

design would suffice. The objective in this case would be to find

out parameters (factors) that cause significant change in the

output by shifting from one (low) level to another (high).

Additionally, because in order to investigate all possible

combinations of levels, 2k runs (where k = number of factors in

the experimental design) would be needed, the so-called

fractional factorial designs are often used, where only a part

(fraction) of the 2k (full factorial) design is used. These designs,

however, should be treated with care, as they are constructed

under a number of assumptions, which may not hold for the given

system.

Two-level factorial designs are also widely used for

construction of linear regression models, but their use implies that

relationship between system inputs and output is linear. If there is

a chance that this relationship is not linear, other designs,

allowing to construct polynomial regression models (e.g.

Response Surface Methodology), might be considered instead.

Therefore, it can be summarised that well-chosen experimental

design would involve minimum possible number of runs required

to obtain necessary information about the system under test. Also

on this step response variables should be agreed on.

Taking into consideration everything said above, the

following actions are needed to implement the method:

a) Define response variables: those would be performance

metrics (e.g. response time, CPU utilisation, throughput);

b) Create design space via screening for important factors and

their interactions using two-level fractional factorial design:

choose a number of factors that might influence

performance metrics, set the low and high levels for them

(the levels are chosen based on the experimenter’s

experience and knowledge of the system).

c) Validate results of the screening with full factorial design

for the chosen subset of important factors (may or may not

require additional runs) and allocation of variation [7].

Allocation of variation shows how much variation each of

the factors causes in the response variable when changed

from low to high level.

d) Construct linear regression model based on the experiment

results from b) and c) (may or may not require additional

runs).

3. CASE STUDY

3.1 Objective
The objective of this case study is to build the model

allowing to describe and predict performance of the web-based 3-

tier e-commerce application following the methodology presented

in the Section 2. The outputs (response variables) considered are

application response time and CPU utilisation.

3.2 Test Environment

3.2.1 Testbed Description
The testbed consists of workload generator syntactically

generating requests to a backend web-based application.

Experiments in this study were performed using model-driven

workload generator called MDLoad [5]. MDload automatically

generates requests to an application under test by simulating a set

of users. Since the workload generator needs to create

considerable number of virtual users, MDLoad was deployed on a

Virtual Machine (VM) with 12 CPU and 3GB of memory. This

VM is located on the private cloud at Imperial College London.

The hosts of the private cloud are Intel Xeon with CPU E5-2450

2.10 GHz. The capacity of the VM machine was chosen based on

the previous experience with MDload such a way that relatively

small number of users would saturate the application, resulting in

significant increase in application response time and CPU

utilization, but not leading to the MDload outage. This decision

allowed to reduce execution time needed for each experimental

run while still obtaining sufficient samples to estimate mean

values of performance metrics.

The software stack of workload generator comprises JAVA

and shell scripts for submitting HTTP requests and controlling the

behaviour of virtual users by creating session-based workload.

The request composition of the sessions for the three MDload

user classes adopted in this study is shown in Table 1:

Table 1: Request mix per session for 3 MDload user classes.

Request
Class I

(light)

Class II

(medium)

Class

III*

(heavy)

Home + + +

Login + + +

Login details + + +

Main + +

Order History + +

QuickAddMain + +

CartAddAll + +

Checkout + +

CheckoutAddressNext + +

CheckoutPaymentNext + +

CheckoutShippingNext + +

Logout + + +

*Class III has higher number of Checkout requests per session than Class

II

3.2.2 Application Under Test
The application under test is Apache OFBiz [6] - an open

source web-based e-commerce system. The OFBiz instance is

http://www.itl.nist.gov/div898/handbook/pri/section3/pri31.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri32.htm

deployed on a VM with 1 CPU and 3GB of memory on the same

private cloud at Imperial College London. Keeping both workload

generator and backend application on the hosts in the same

private cloud and connected through high-speed broadband

network allows to remove ‘noise’ in the system response time

(collected on the MDload side using tool’s features) caused by

network latencies. Therefore, measurements for the system

response time can be considered response time on the application

level.

3.3 Screening Procedure
There are a number of parameters (in DoE known as

‘factors’) that might influence application performance. These

may be external inputs, such as, for example, number of users,

user think time, or system parameters (e.g. hardware

configuration on which application is deployed). Such parameters

may be controllable (can be changed by the experimenter) and

uncontrollable. For example, network delay, mentioned above,

can be viewed as the noise factor, influencing response time as it

is experienced by the user. An extensive taxonomy of factors is

given in [4]. However, to explore all possible combinations of

these factors would require 2k experimental runs, as was

mentioned in the Section 2. In the example from [4] that would be

238=274x109 runs, which is, of course, infeasible. Therefore, not

only fractional factorial design is needed, but also careful

consideration for the choice of the candidate factors for the

screening procedure, based on the experience of the experimenter.

In this study it was decided to start with a small set of well-

known factors, such as number of users, user think time and

workload mix. Additionally it was tested if the testbed set up

described in 3.2.1 would allow to decrease execution time of the

experimental run without causing deterioration of estimates. The

low and high levels for the number of users were chosen based on

the N*, where N*, following the definition from [3] is the point

where application starts exhibiting saturation behaviour. Levels

for other factors for the two-level design were chosen based on

the authors’ experience with application load testing and MDload.

The summary of factors and their levels chosen for the screening

procedure is given in the Table 2.

Table 2: Factors and their levels.

Levels

Low (-1) High (1)

Number of users* 3** 20

User think time, s 10 1

Execution time,

min (steady state)
10 30

Workload mix

(user class)
I III

* N*=16 for user think time = 5 s.

** N_users = 3 instead of 1 is chosen to obtain more samples for

averaging.

To investigate all possible combinations of these four

factors would require 24=16 runs, which is theoretically feasible,

but with half of the runs requiring execution for 30 minutes it

would take 5 h 20 min. Therefore it was decided to use fractional

factorial design in line with the commonly-used procedure. It is

important to note, though, that the price for the reduction in runs

is so-called confounding of effects. This means that the effects

(factors and their interactions) estimated based on the results of

fractional factorial design are a combination of two or more

effects. Hence it is important to choose fractional factorial design

in such a way so that main effects are confounded with higher-

order interactions. The higher-order interactions (interactions of

N-1 factors in design for N factors) are generally considered

negligible. The fractional factorial design of resolution IV (all

main effects will be confounded with higher-order interactions,

low order interactions will be confounded with each other) for the

example data from Table 2 along with the confounding pattern is

presented in Table 3:

Table 3: Fractional factorial design for four factors.

Exp.

run

Number

of users

(A)

Think

time

(B), s

Execution

time (C),

min

User

class

(D)

Confounding

pattern

1 3 10 10 I I=I+ABCD

A = A + BCD

B = B + ACD

C = C + ABD

D = D + ABC

AB = AB + CD

AC = AC + BD

AD = AD + BC

2 3 10 30 III

3 3 1 10 III

4 3 1 30 I

5 20 10 10 III

6 20 10 30 I

7 20 1 10 I

8 20 1 30 III

As was mentioned above, higher-order interactions are

considered negligible. Therefore, based on the results of the

experimental runs it should be possible to make conclusion about

significance of main effects (significance of interactions should

be treated carefully as they are confounded with each other).

Response variables response time and CPU utilisation,

obtained in the screening experiments can be analysed graphically

(numerical analysis such as ANOVA or p-values is not

recommended because of confounding). Example analysis for the

response time is shown in the Figures 1 and 2.

A C

C

A D

B

A B

D

A

5 0 0 04 0 0 03 0 0 02 0 0 01 0 0 00

T
e

r
m

Ef fe c t

4 5 8 2

A N u s e rs

B T h in k t im e

C E xe cu t io n t im e

D W o rk lo a d m ix

F a c to r N a m e

P a r e to C h a r t o f th e E f f e c ts

(r e s p o n s e is C 9 , A lp h a = 0 ,0 5)

Le n th 's P S E = 1 2 1 7 ,2 5

Figure 1. Ranking of effects.

On the Figure 1 estimated effects are ranked by their

magnitude. Red line represents Lenth’s PSE – pseudo-standard

error. All effects that cross this line are deemed significant. From

the Figure 1 it is obvious that none of the factors are deemed

significant, which is suspicious, because from the Figure 2 it is

seen that at least number of users, think time and workload mix

make an impact on the response time. To investigate this problem

8 more runs were conducted to create a full factorial design for 4

factors. The results (for the response time) of the full factorial

design for 4 factors are shown on Figure 3.

1-1

3 0 0 0

2 5 0 0

2 0 0 0

1 5 0 0

1 0 0 0

1-1

1-1

3 0 0 0

2 5 0 0

2 0 0 0

1 5 0 0

1 0 0 0

1-1

N u se rs

M
e

a
n

Th in k t ime

E x e c u t io n t im e W o rklo a d m ix

M a in E f f e c ts P lo t f o r C 9

Da ta M e a n s

Figure 2. Main effects plot.

A C D

B C

A C

A B C

C D

A B C D

C

B C D

B D

A B D

A D

B

A B

D

A

1 8 0 01 6 0 01 4 0 01 2 0 01 0 0 08 0 06 0 04 0 02 0 00

T
e

r
m

Ef fe c t

1 2 8 9

A N u s e rs

B T h in k t im e

C E xe cu t io n t im e

D W o rk lo a d m ix

F a c to r N a m e

P a r e to C h a r t o f th e E f f e c ts

(r e s p o n s e is C 9 , A lp h a = 0 ,0 5)

Le n th 's P S E = 5 0 1 ,5 6 3

Figure 3. Ranking of effects.

It is clearly seen from the Figure 3 that number of users is

significant, user class is close to significance, as well as the

interaction between number of users and think time. Additionally,

it can be seen that high-order interactions ABD and BCD (and

even ABC) are not negligible as had been assumed. This resulted

in the distortion of main effects and the value of Lenth’s PSE,

which is based on the effects’ magnitudes. In the case of 4

factors, where at least two of them turned out to be significant

(number of users and workload mix) as well as the two-way

interaction for the third factor(think time), the combined influence

ABD of these three factors turned out to be large. Such

occurrence can be mitigated by screening for large number of

factors, especially with deliberate addition of factors which

should not be significant, because then there is a small chance

that combined interaction of, e.g., 5 factors for 6-factor design

would be present.

After screening test is conducted, and significant main

effects are found, the full factorial design with replications should

be conducted for this subset. If there are significant interactions

(or close to significance), the factors that cause them also should

be included into full factorial design, even if they themselves

were not identified as significant. In the example think time (B)

would be taken into the subset of significant factors, even though

it is on itself wasn’t flagged as significant, because the interaction

AB (between number of users and think time) is very large.

Execution time did not show any significant influence either on

response time or CPU utilisation, therefore it was set at the low

level (10 minutes). The full factorial design with 3 replications

and response variables are presented in the Table 4. This design is

needed to validate analysis conducted on the fractional factorial

design stage and required 4 additional runs (2, 3, 5 and 8).

Table 4: Full factorial design for 3 factors.

Exp. run N_users
Think time,

s
User class

(D)

Execution

time, min

1 3 10 I 10

2 3 10 III 10

3 3 1 I 10

4 3 1 III 10

5 20 10 I 10

6 20 10 III 10

7 20 1 I 10

8 20 1 III 10

The analysis of results confirmed that all three factors, as

most of their low-order interactions were significant. Additional

analysis was conducted to estimate the allocation of variation:

how much variation each of the factors causes in the response

variable when changed from low to high level [7]. Variation of

responses (in %) due to factors and their interactions is shown in

Table 5:

Table 5: Variation of responses (in %) due to factors and their

interactions.

Effect Response time CPU utilisation

N_users 26.03 54.27

Think time 4.53 42.99

User class 36.25 1.14

N_users:Think time 19.13 0.59

N users:User class 6.63 7.886*10-6

Think time:User class 1.5x10-8 1.8917*10-4

N_users:Think time:

User class
5.42 0.91

Error 2.01 7.6946*10-4

Error term in the Table 5 contains both random error and

influence of any factors that were not considered when

constructing screening design. As this error term is very small for

both response variables, it is safe to assume that all major sources

of variation were identified.

3.4 Constructing the Model
As both response time and CPU utilization exhibit non-

linear behaviour, Response Surface (RS) design, namely central-

composite Box-Wilson design, was chosen. This design contains

full factorial design for 3 factors and centre points, therefore can

be used to construct both linear, quadratic and polynomial

models. Additionally, the ‘faced’ configuration of the design was

implemented. This configuration does not use points outside of

the design space. The prediction capabilities of the model

constructed based on this design can be worse than of a

combination using the points outside the design space, but in our

case this combination is impossible to implement (we can’t go

beyond user classes I and III). This design requires 24 runs in

total (centre points are run 10 times to allow for a more uniform

estimate of the prediction variance over the design space). The

design is shown in the Table 6 (shaded area shows full factorial

design):

Table 6: Box-Wilson central composite ‘faced’ design.

N 1 2 3 4 5 6 7 8 9 10 11 12

X1 -1 -1 -1 -1 1 1 1 1 -1 1 0 0

X2 -1 -1 1 1 -1 -1 1 1 0 0 -1 1

X3 -1 1 -1 1 -1 1 -1 1 0 0 0 0

N 13 14 15 16 17 18 19 20 21 22 23 24

X1 0 0 0 0 0 0 0 0 0 0 0 0

X2 0 0 0 0 0 0 0 0 0 0 0 0

X3 -1 1 0 0 0 0 0 0 0 0 0 0

As was mentioned above, chosen RS design allows to

construct various types of regression models. We want to

investigate how they fare in prediction. Summary of the

constructed regression models is given in the Table 7:

Table 7: Regression models constructed from the experiment

results and used in subsequent analysis.

Name Description Formula

Linear

Model contains an intercept

and linear terms for each

factor

y=I+a1x1+a2x2+

+a3x3

Interactions

Model contains an intercept,

linear terms, and all products

of pairs of distinct factors

y=I+a1x1+a2x2+

+a3x3+a4x1:x2+

+a5x1:x3+a6x2:x3

Pure

Quadratic

Model contains an intercept,

linear terms, and squared

terms

y=I+a1x1+a2x2+

+a3x3+a4x1
2+

+a5x2
2+a6x3

2

Quadratic

Model contains an intercept,

linear terms, interactions, and

squared terms

y=I+a1x1+a2x2+

+a3x3+a4x1:x2+

+a5x1:x3+a6x2:x3+

+a7x1
2+a8x2

2+a9x3
2

Full

Polynomial

Model is a polynomial with

all terms up to degree 3 in the

first factor, degree 3 in the

second factor, and degree 3 in

the third factor*

y=I+a1x1+a2x2+

+a3x3+a4x1:x2+

+a5x1:x3+a6x2:x3+

+a7x1:x2:x3+a8x1
2++a

9x2
2+a10x3

2+

+a11x1
2:x2+

+a12x1:x2
2+ +a13x1

2:x3

*x3 terms are zero, the third level was chosen to include 3-way interaction

between number of users, think time and user class into the model.

Prediction curves R=f(N users) and U_cpu=f(N users) were

constructed for each model type for every combination of user

class and user think time. As an example, the curves for ‘full

polynomial’ model type and user class III are shown in the

Figures 4 and 5.

Figure 4. Prediction for the response time.

Figure 5. Prediction for CPU utilization.

4. ANALYSIS AND DISCUSSION

4.1 Collect Independent Observations.
In order to assess the model prediction capabilities, a series

of experiments with parameter values from the design space was

run. One experiment point was run per each prediction, i.e. pair

{User think time, user class}, for N users = 16. The points

collected for the model verification are given in the Table 8:

Table 8: Independent observations.

Think

time, s

User class I User class II User class III

RT, s
Ucpu,

%
RT, s

Ucpu,

%
RT, s

Ucpu,

%

10 0.79 31.8 2.72 33.1 2.7 39.8

7.5 0.83 41.0 3.14 39.9 2.02 37.0

5 0.88 50.7 2.72 53.5 2.00 67.0

2.5 1.29 76.1 2.03 77.8 2.83 64.8

1 1.43 80.1 2.91 80.99 3.71 92.0

4.2 Prediction Accuracy.
Prediction error for each {User think time, user class} pair

is defined as a relative standard error

where Y is an observation and is predicted value. Accuracy of

prediction for the entire model is estimated as a standard

deviation of the sum of squares of prediction errors

where N = 15 (3 user classes, 5 think time values (1, 2.5, 5, 7.5

and 10 s)) and P = 4 (intercept and 3 independent variables).

Additionally, these observations were compared to the

prediction based on the out-of-the-box Mean Value Analysis

(MVA) algorithm for queueing network models, implemented in

the Java Modelling Tool [2].

Total prediction error and estimation bias (average of all

differences between observed and predicted values, not their

absolute values) for response time and CPU utilisation for each

model type, full factorial design (FF) for 3 factors and MVA

prediction are summarized in the Table 9:

Table 9: Total prediction error and bias for various model

types.

 Total prediction

error σ, %
Bias, %

RT CPU RT CPU

Response

Surface

models

Linear 6.51 4.3 -3.62 -0.75

Interactions 6.32 4.09 -2.6 -0.65

Pure

quadratic
5.11 4.93 -2.02 -0.79

Quadratic 5.42 4.09 -1.0 -0.69

Full

polynomial
5.12 4.06 -1.97 -0.96

FF 6.896 3.987 -4.96 -0.32

MVA 40.0 11.4 -234.6 7.29

From the Table 9 it may be seen that prediction error σ for

the response time is a bit higher in the case of linear models

(‘linear’, ‘interactions’ and full factorial design), which is to be

expected since relationship between number of users and response

time is not linear. As for the CPU utilization, all DoE models

showed error 4-5%. This may be explained by the fact that within

most of the design space CPU utilization increases linearly with

increase in the number of users. However, prediction by MVA

algorithm produced the error of 40% for the response time.

In order to investigate this phenomenon, we looked into

independent observations and predicted values obtained from

both DoE models and MVA algorithm. From the Table 8 and

Figure 4 it may be seen that for the response time both observed

and predicted response times do not follow classical trend of

monotonous increase with decrease in user think time [3]. The

comparison between independent observations, DoE RS ‘full

polynomial’ model and MVA algorithm predictions, along with

prediction errors (on the example for the user class III) are

presented in the Table 10. Comparison of results in Table 10

revealed that both independent observations and values, predicted

by RS model, follow the same trend. It indicates that there is

some persistent (i.e. constantly present) behaviour, which RS

model, having no knowledge of the system under test, however, is

able to capture based only on the application inputs and outputs.

MVA algorithm also captures this trend, however, it drastically

overestimates response time values.

Table 10: Trend for response time (s) in predicted values and

observations.

User think time, s

10 7.5 5 2.5 1

Observed 2.7 2.02 1.9 2.8 3.7

RS model 2.66 2.33 2.39 2.84 3.67

Error,% 1.1 -15.3 -25.8 -1.4 0.8

MVA 33 24.9 25.5 43.8 58.4

Error, % -1122 -1124 -1216 -1464 -1478

All RS models demonstrate negative bias, which means

that overall prediction tends to overestimate both response time

and CPU utilisation, except MVA algorithm, which

underestimates CPU utilisation.

5. CONCLUSIONS AND FUTURE WORK
This study highlighted the importance of software

performance modelling and prediction, identified existing gap in

the knowledge and proposed a new performance modelling

approach, based on the Design of Experiments technique.

The results demonstrate that proposed method produces

good prediction of an application performance while treating it as

a black box, even in the presence of an anomalous behaviour.

Additionally, it showed much better prediction capabilities

compared to the out-of-the box Queuing Network model. This

allows to suggest that proposed method may be used for the

performance modelling and prediction on the application

development stage, where models based on measurements may be

a better alternative as they provide a good trade-off between

efforts required for model specification and accuracy of

estimation and prediction.

Considering the study outcomes, some of the directions for

further work may be investigation of the approach predictive

capabilities in multiclass models and as a tool for anomaly

detection.

6. ACKNOWLEDGMENTS
This work was supported by the funding from the European

Union’s Horizon 2020 research and innovation programme [grant

agreement No. 644869]. Authors also would like to thank Dr. G.

Casale and Dr. J.F. Perez-Bernal from Imperial College London

for their support and invaluable comments.

7. REFERENCES
[1] NIST/SEMATECH e-Handbook of Statistical Methods

http://www.itl.nist.gov/div898/handbook/

[2] Java Modelling Tools. http://jmt.sourceforge.net/

[3] Lazowska E et. al. ‘Quantitative system performance’. Available

online from: http://homes.cs.washington.edu/~lazowska/qsp/

[4] Z. Li, L. O'Brien, H. Zhang, and R. Cai. A factor framework for

experimental design for performance evaluation of commercial cloud

services. In Cloud Computing Technology and Science, 2012 IEEE

4th International Conference on, pages 169, 176.

[5] MDload load generation simulator. https://github.com/imperial-

modaclouds?query=modaclouds-mdload

[6] OFBiz web-based 3 tier e-commerce application.

http://ofbiz.apache.org/

[7] J. Rai. Art of Computer Systems Performance Analysis Techniques

For Experimental Design Measurements Simulation And Modeling.

Wiley Computer Publishing, John Wiley & Sons, Inc. ISBN:

0471503363 Pub Date: 05/01/91

[8] Software Engineering Institute - Blog

https://blog.sei.cmu.edu/post.cfm/continuous-integration-in-devops

[9] Spinner S., Casale G., Zhu X., and Kounev S. LibReDE: A Library

for Resource Demand Estimation (Demonstration Paper). In

Proceedings of the 5th ACM/SPEC International Conference on

Performance Engineering (ICPE 2014), Dublin, Ireland, March 22-

26, 2014. ACM. March 2014

[10] D. Westermann, R. Krebs, and J. Happe. Efficient experiment

selection in automated software performance evaluations. In

Computer Performance Engineering, pages 325-339. Springer, 2011.

http://www.itl.nist.gov/div898/handbook/

