1,452 research outputs found

    Queueing models for appointment-driven systems.

    Get PDF
    Many service systems are appointment-driven. In such systems, customers make an appointment and join an external queue(also referred to as the ā€œwaiting listā€). At the appointed date, the customer arrives at the service facility, joins an internal queue and receives service during a service session. After service, the customer leaves the system. Important measures of interest include the size of the waiting list, the waiting time at the service facility and server overtime. These performance measures may support strategic decisionmaking concerning server capacity (e.g. how often, when and for how long should a server be online). We develop an ew model to assess these performance measures. The model is a combination of a vacation queueing system and an appointment system.Queueing system; Appointment system; Vacation model; Overtime; Waiting list;

    Organizing Multidisciplinary Care for Children with Neuromuscular Diseases

    Get PDF
    The Academic Medical Center (AMC) in Amsterdam, The Netherlands, recently opened the `Children's Muscle Center Amsterdam' (CMCA). The CMCA diagnoses and treats children with neuromuscular diseases. These patients require care from a variety of clinicians. Through the establishment of the CMCA, children and their parents will generally visit the hospital only once a year, while previously they visited on average six times a year. This is a major improvement, because the hospital visits are both physically and psychologically demanding for the patients. This article describes how quantitative modelling supports the design and operations of the CMCA. First, an integer linear program is presented that selects which patients to invite for a treatment day and schedules the required combination of consultations, examinations and treatments on one day. Second, the integer linear program is used as input to a simulation to study to estimate the capacity of the CMCA, expressed in the distribution of the number patients that can be seen on one diagnosis day. Finally, a queueing model is formulated to predict the access time distributions based upon the simulation outcomes under various demand scenarios

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    Reallocating resources to focused factories: a case study in chemotherapy

    Get PDF
    This study investigates the expected service performance associated with a proposal to reallocate resources from a centralized chemotherapy department to a breast cancer focused factory. Using a slotted queueing model we show that a decrease in performance is expected and calculate the amount of additional resources required to offset these losses. The model relies solely on typical outpatient scheduling system data, making the methodology easy to replicate in other outpatient clinic settings. Finally, the paper highlights important factors to consider when assigning capacity to focused factories. These considerations are generally relevant to other resource allocation decisions

    Reallocating resources to focused factories: a case study in chemotherapy

    Get PDF
    This study investigates the expected service performance associated with a proposal to reallocate resources from a centralized chemotherapy department to a breast cancer focused factory. Using a slotted queueing model we show that a decrease in performance is expected and calculate the amount of additional resources required to offset these losses. The model relies solely on typical outpatient scheduling system data, making the methodology easy to replicate in other outpatient clinic settings. Finally, the paper highlights important factors to consider when assigning capacity to focused factories. These considerations are generally relevant to other resource allocation decisions

    Modeling a healthcare system as a queueing network:The case of a Belgian hospital.

    Get PDF
    The performance of health care systems in terms of patient flow times and utilization of critical resources can be assessed through queueing and simulation models. We model the orthopaedic department of the Middelheim hospital (Antwerpen, Belgium) focusing on the impact of outages (preemptive and nonpreemptive outages) on the effective utilization of resources and on the flowtime of patients. Several queueing network solution procedures are developed such as the decomposition and Brownian motion approaches. Simulation is used as a validation tool. We present new approaches to model outages. The model offers a valuable tool to study the trade-off between the capacity structure, sources of variability and patient flow times.Belgium; Brownian motion; Capacity management; Decomposition; Health care; Healthcare; Impact; Model; Models; Performance; Performance measurement; Queueing; Queueing theory; Simulation; Stochastic processes; Structure; Studies; Systems; Time; Tool; Validation; Variability;

    Healthcare queueing models.

    Get PDF
    Healthcare systems differ intrinsically from manufacturing systems. As such, they require a distinct modeling approach. In this article, we show how to construct a queueing model of a general class of healthcare systems. We develop new expressions to assess the impact of service outages and use the resulting model to approximate patient flow times and to evaluate a number of practical applications. We illustrate the devastating impact of service interruptions on patient flow times and show the potential gains obtained by pooling hospital resources. In addition, we present an optimization model to determine the optimal number of patients to be treated during a service session.Operations research; Health care evaluation mechanisms; Organizational efficiency; Management decision support systems; Time management; Queueing theory;
    • ā€¦
    corecore