530 research outputs found

    Concave Switching in Single and Multihop Networks

    Full text link
    Switched queueing networks model wireless networks, input queued switches and numerous other networked communications systems. For single-hop networks, we consider a {(α,g\alpha,g)-switch policy} which combines the MaxWeight policies with bandwidth sharing networks -- a further well studied model of Internet congestion. We prove the maximum stability property for this class of randomized policies. Thus these policies have the same first order behavior as the MaxWeight policies. However, for multihop networks some of these generalized polices address a number of critical weakness of the MaxWeight/BackPressure policies. For multihop networks with fixed routing, we consider the Proportional Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is maximum stable, but must maintain a queue for every route-destination, which typically grows rapidly with a network's size. However, this proportionally fair policy only needs to maintain a queue for each outgoing link, which is typically bounded in number. As is common with Internet routing, by maintaining per-link queueing each node only needs to know the next hop for each packet and not its entire route. Further, in contrast to BackPressure, the Proportional Scheduler does not compare downstream queue lengths to determine weights, only local link information is required. This leads to greater potential for decomposed implementations of the policy. Through a reduction argument and an entropy argument, we demonstrate that, whilst maintaining substantially less queueing overhead, the Proportional Scheduler achieves maximum throughput stability.Comment: 28 page

    Switched networks with maximum weight policies: Fluid approximation and multiplicative state space collapse

    Full text link
    We consider a queueing network in which there are constraints on which queues may be served simultaneously; such networks may be used to model input-queued switches and wireless networks. The scheduling policy for such a network specifies which queues to serve at any point in time. We consider a family of scheduling policies, related to the maximum-weight policy of Tassiulas and Ephremides [IEEE Trans. Automat. Control 37 (1992) 1936--1948], for single-hop and multihop networks. We specify a fluid model and show that fluid-scaled performance processes can be approximated by fluid model solutions. We study the behavior of fluid model solutions under critical load, and characterize invariant states as those states which solve a certain network-wide optimization problem. We use fluid model results to prove multiplicative state space collapse. A notable feature of our results is that they do not assume complete resource pooling.Comment: Published in at http://dx.doi.org/10.1214/11-AAP759 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On the Flow-level Dynamics of a Packet-switched Network

    Get PDF
    The packet is the fundamental unit of transportation in modern communication networks such as the Internet. Physical layer scheduling decisions are made at the level of packets, and packet-level models with exogenous arrival processes have long been employed to study network performance, as well as design scheduling policies that more efficiently utilize network resources. On the other hand, a user of the network is more concerned with end-to-end bandwidth, which is allocated through congestion control policies such as TCP. Utility-based flow-level models have played an important role in understanding congestion control protocols. In summary, these two classes of models have provided separate insights for flow-level and packet-level dynamics of a network

    Qualitative Properties of alpha-Weighted Scheduling Policies

    Full text link
    We consider a switched network, a fairly general constrained queueing network model that has been used successfully to model the detailed packet-level dynamics in communication networks, such as input-queued switches and wireless networks. The main operational issue in this model is that of deciding which queues to serve, subject to certain constraints. In this paper, we study qualitative performance properties of the well known α\alpha-weighted scheduling policies. The stability, in the sense of positive recurrence, of these policies has been well understood. We establish exponential upper bounds on the tail of the steady-state distribution of the backlog. Along the way, we prove finiteness of the expected steady-state backlog when α<1\alpha<1, a property that was known only for α≥1\alpha\geq 1. Finally, we analyze the excursions of the maximum backlog over a finite time horizon for α≥1\alpha \geq 1. As a consequence, for α≥1\alpha \geq 1, we establish the full state space collapse property.Comment: 13 page

    Fairness in overloaded parallel queues

    Full text link
    Maximizing throughput for heterogeneous parallel server queues has received quite a bit of attention from the research community and the stability region for such systems is well understood. However, many real-world systems have periods where they are temporarily overloaded. Under such scenarios, the unstable queues often starve limited resources. This work examines what happens during periods of temporary overload. Specifically, we look at how to fairly distribute stress. We explore the dynamics of the queue workloads under the MaxWeight scheduling policy during long periods of stress and discuss how to tune this policy in order to achieve a target fairness ratio across these workloads
    • …
    corecore