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On the Flow-level Dynamics of a Packet-switched

Network

Ciamac C. Moallemi and Devavrat Shah ∗

Abstract: The packet is the fundamental unit of transportation in modern communication

networks such as the Internet. Physical layer scheduling decisions are made at the level of

packets, and packet-level models with exogenous arrival processes have long been employed to

study network performance, as well as design scheduling policies that more efficiently utilize

network resources. On the other hand, a user of the network is more concerned with end-to-end

bandwidth, which is allocated through congestion control policies such as TCP. Utility-based

flow-level models have played an important role in understanding congestion control protocols.

In summary, these two classes of models have provided separate insights for flow-level and

packet-level dynamics of a network.

In this paper, we wish to study these two dynamics together. We propose a joint flow-level

and packet-level stochastic model for the dynamics of a network, and an associated policy

for congestion control and packet scheduling that is based on α-weighted policies from the

literature. We provide a fluid analysis for the model that establishes the throughput optimality

of the proposed policy, thus validating prior insights based on separate packet-level and flow-

level models. By analyzing a critically scaled fluid model under the proposed policy, we provide

constant factor performance bounds on the delay performance and characterize the invariant

states of the system.

Keywords and phrases: Flow-level model, Packet-level model, Congestion control, Schedul-

ing, Utility maximization, Back-pressure maximum weight.

1. Introduction

The optimal control of a modern, packet-switched data network can be considered from two distinct

vantage points. From the first point of view, the atomic unit of the network is the packet. In

a packet-level model, the limited resources of a network are allocated via the decisions on the

scheduling of packets. Scheduling policies for packet-based networks have been studied across a

long line of literature (e.g., [30, 27, 24]). The insights from this literature have enabled the design of

scheduling policies that allow for the efficient utilization of the resources of a network, in the sense

of maximizing the throughput of packets across the network, while minimizing the delay incurred

by packets, or, equivalently, the size of the buffers needed to queue packets in the network.

Packet-level models accurately describe the mechanics of a network at a low level. However,

they model the arrival of new packets to the network exogenously. In reality, the arrival of new

packets is also under the control of the network designer, via rate allocation or congestion control

decisions. Moreover, while efficient utilization of network resources is a reasonable objective, a

network designer may also be concerned with the satisfaction of end users of the network. Such

objectives cannot directly be addressed in a packet-level model.
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2 C. C. Moallemi & D. Shah

Flow-level models (cf. [12, 3]) provide a different point of view by considering the network at

a higher level of abstraction or, alternatively, over a longer time horizon. In a flow-level model,

the atomic unit of the network is a flow, or user, who wishes to transmit data from a source to a

destination. Resource allocation decisions are made via the allocation of a transmission rate to each

flow. Each flow generates utility as a function of its rate allocation, and rate allocation decisions

may be made so as to maximize a global utility function. In this way, a network designer can address

end user concerns such as fairness.

Flow-level models typically make two simplifying assumptions. The first assumption is that,

as the number of flows evolves stochastically over time, the rates allocated to flows are updated

instantaneously. The rate allocation decision for a particular flow is made in a manner that requires

immediate knowledge of the demands of other flows for the limited transmission resources along the

flow’s entire path. This assumption, referred to as time-scale separation, is based on the idea that

flows arrive and depart according to much slower processes than the mechanisms of the rate control

algorithm. The second assumption is that, once the rate allocation decision is made, each flow can

transmit data instantaneously across the network at its given rate. In reality, each flow generates

discrete packets, and these packets must travel through queues to traverse the network. Moreover,

the packet scheduling decisions within the network must be made in a manner that is consistent

with and can sustain the transmission rates allocated to each flow, and the induced packet arrival

process must not result in the inefficient allocation of low level network resources.

In this paper, our goal is to develop a stochastic model that jointly captures the packet-level and

flow-level dynamics of a network, without any assumption of time-scale separation. The contribu-

tions of this paper are as follows:

1. We present a joint model where the dynamic evolution of flows and packets is simultaneous.

In our model, it is possible to simultaneously seek efficient allocation of low level network

resources (buffers) while maximizing the high-level metric of end-user utility.

2. For our network model, we propose packet scheduling and rate allocation policies where

decisions are made via myopic algorithms that combine the distinct insights of prior packet-

and flow-level models. Packets are scheduled according to a maximum weight policy. The

rate allocation decisions are completely local and distributed. Further, in long term (i.e.,

under fluid scaling), the rate control policy exhibits the behavior of a primal algorithm for

an appropriate utility maximization problem.

3. We provide a fluid analysis of the joint packet- and flow-level model. This analysis allows

us to establish stability of the joint model and the throughput optimality of our proposed

control policy.

4. We establish, using a fluid model under critical loading, a performance bound on our control

policy under the metric of minimizing the outstanding number of packets and flows in the

network (or, in other words, minimizing delay). We demonstrate that, for a class of balanced

networks, our control policy performs to within a constant factor of any other control policy.

5. Under critical loading, we characterize the invariant manifold of the fluid model of our con-

trol policy, as well as establishing convergence to this manifold starting from any initial

state. These results, along with the method of Bramson [4], lead to the characterization of

multiplicative state space collapse under heavy traffic scaling. Further, we establish that the

invariant states of the fluid model are asymptotically optimal under a limiting control policy.
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On the Flow-level Dynamics of a Packet-switched Network 3

In summary, our work provides a joint dynamic flow- and packet-level model that captures the

microscopic (packet) and macroscopic (fluid, flow) behavior of large packet-based communications

network faithfully. The performance analysis of our rate control and scheduling algorithm suggests

that the separate insights obtained for dynamic flow-level models [12, 3] and for packet-level models

[30, 27, 24] indeed continue to hold in the combined model.

The balance of the paper is organized as follows. In Section 1.1, we survey the related literature on

flow- and packet-level models. In Section 2, we introduce our network model. Our network control

policy, which combines features of maximum weight scheduling and utility-based rate allocation is

described in Section 3. A fluid model is derived in Section 4. Stability (or, throughput optimality) of

the network control policy is established in Section 5. The critically scaled fluid model is described

in Section 6. In Section 7, we provide performance guarantees for balanced networks. The invariant

states of the critically scaled fluid model are described in Section 8. Finally, in Section 9, we

conclude.

1.1. Literature Review

The literature on scheduling in packet-level networks begins with Tassiulas and Ephremides [30],

who proposed a class of ‘maximum weight’ (MW) or ‘back-pressure’ policies. Such policies assign

a weight to every schedule, which is computed by summing the number of packets queued at links

that the schedule will serve. At each instant of time, the schedule with the maximum weight will be

selected. Tassiulas and Ephremides [30] establish that, in the context of multi-hop wireless networks,

MW is throughput optimal. That is, the stability region of MW contains the stability region of

any other scheduling algorithm. This work was subsequently extended to a much broader class of

queueing networks by others (e.g., [18, 7, 29, 6]).

By allowing for a broader class of weight functions, the MW algorithm can be generalized to the

family of so-called MW-α scheduling algorithms. These algorithms are parameterized by a scalar

α ∈ (0,∞). MW-α can be shown to inherit the throughput optimality of MW [14, 22] for all values

of α ∈ (0,∞). However, it has been observed experimentally that the average queue length (or,

‘delay’) under MW-α decreases as α → 0+ [14]. Certain delay properties of this class of algorithms

have been subsequently established under a heavy traffic scaling [27, 6, 24].

Flow-level models have received significant recent attention in the literature, beginning with the

work of Kelly, Maulloo, and Tan [12]. This work developed rate-control algorithms as decentralized

solutions to a deterministic utility maximization problem. This optimization problem seeks to

maximize the utility generated by a rate allocation, subject to capacity constraints that define a

set of feasible rates. This work was subsequently generalized to settings where flows stochastically

depart and arrive [17, 8, 3], addressing the question of the stability of the resulting control policies.

Fluid and diffusion approximations of the resulting systems have been subsequently developed

[13, 11, 32]. Under these stochastic models, flows are assumed to be allocated rate as per the

optimal solution of the utility maximization problem instantaneously. Essentially, this time-scale

separation assumption captures the intuition that the dynamics of the arrivals and departures of

flows happens on a much slower time-scale than the dynamics of rate control algorithm.

In reality, flow arrivals/departures and rate control happen on the same time-scale. Various

authors have considered this issue, in the context of understanding the stability of the stochastic

flow level models without the time-scale separation assumption [15, 10, 28, 20, 26]. Lin, Schroff,
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4 C. C. Moallemi & D. Shah

and Srikant [15] assume a stochastic model of flow arrivals and departures as well as the operation

of a primal-dual algorithm for rate allocation. However, there are no packet dynamics present.

Other work [10, 28, 20] has assumed that rate control for each type of flow is a function of a local

Lagrange multiplier; and a separate Lagrange multiplier is associated with each link in the network.

These multipliers are updated using a maximum weight-type policy. In this line of work, Lagrange

multipliers are interpreted as queue lengths, but there are no actual packet-level dynamics present.

Further, these models lack flow-level dynamics as well. Thus, while overall this collection of work is

closest to the results of this paper, it stops short of offering a complete characterization of a joint

flow- and packet-level dynamic model.

Finally, we take note of recent work by Walton [31], which presents a simple but insightful model

for joint flow- and packet-level dynamics. In this model, each source generates packets by reacting

to the acknowledgements from its destination, and at each time instant, each source has at most

one packet in flight. Under a many-source scaling for a specific network topology, it is shown that

the network operates with rate allocation as per the proportional fair criteria. This work provides

important intuition about the relationship between utility maximization and the rate allocation

resulting from the packet-level dynamics in a large network. However, it is far from providing a

comprehensive joint flow- and packet-level dynamic model as well as efficient control policy.

2. Network Model

In this section, we introduce our network model. This model captures both the flow-level and the

packet-level aspects of a network, and will allow us to study the interplay between the dynamics

at these two levels. In a nutshell, flows of various types arrive according to an exogenous process

and seek to transmit some amount of data through the network. As in the standard congestion

control algorithm, TCP, the flows generate packets at their ingress to the network. The packets

travel to their respective destinations along links in the network, queueing in buffers at intermediate

locations. As each packet travels along its route, it is subject to physical layer constraints, such

as medium access constraints, switching constraints, or constraints due to limited link capacity. A

flow departs once all of its packets have been sent.

In this section, we focus on the mechanics of the network that are independent of the network

control policy. In Section 3, we will propose a specific network control policy to be applied in the

context of this model.

2.1. Network Structure

Consider a network consisting of a set V of destination nodes, a set L of links, and a set F of flow

types. Each flow type is identified by a fixed given route starting at the source link s(f) ∈ L and

ending at the destination node d(f) ∈ V. At a given time, multiple flows of a given type exist in

the network, each flow injects packets into the network.

The network maintains buffers for packets that are in transit across the network. At each link,

there is a separate queue for the packets corresponding to each possible destination. Let E = L×V

denote the set of all such queues, with each e = (ℓ, v) being the queue at link ℓ for final destination

v. Traffic in each queue is transmitted to the next hop along the route to the destination, and

leaves the network when it reaches the destination. We define the routing matrix R ∈ {0, 1}E×E
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On the Flow-level Dynamics of a Packet-switched Network 5

by setting Ree′ , 1 if the next hop for queue e is queue e′, and Ree′ , 0 otherwise. Traffic for a

flow of type f enters the network in the ingress queue ι(f) ,
(
s(f), d(f)

)
∈ E . Define the ingress

matrix Γ ∈ {0, 1}E×F by setting Γef , 1 if ι(f) = e, and Γef , 0 otherwise. We will assume that

the routes are acyclic. In this case, we can define the matrix

Ξ ,
(
I −R⊤

)−1
= I +R⊤ + (R⊤)2 + · · · . (1)

Under the acyclic routing assumption, Ξe′e = 1 if and only if a packet arriving at queue e will

subsequently eventually pass through queue e′.

2.2. Dynamics: Flow-Level

In this section, we will describe in detail the stochastic model for dynamics of flows in the network.

The system evolves in continuous time, with t ∈ [0,∞) denoting time, starting at t = 0. For each

flow type f ∈ F , let Nf (t) denote the number of flows of type f active at time t. Flows of type f

arrive according to an independent Poisson process of rate νf . Flows of type f receive an aggregate

rate of service Xf (t) ∈ [0, C] at time t. Here, C > 0 is the maximal rate of service that can be

provided to any flow type. The total rate of service Xf (t) is divided equally amongst the Nf (t)

flows. As flows are serviced, packets are generated. The evolution of packets and flows proceeds

according to the following:

• Packets are generated by all the flows of type f , in aggregate, as a time varying Poisson

process of rate Xf (t) at time t. If Nf (t) = 0, then we require that Xf (t) = 0.

• When a packet is generated by a flow of type f , it joins the ingress queue ι(f) ∈ E .

• When a packet is generated by a flow of type f , the flow departs from the network with a

probability of 0 < µf < 1, independent of everything else.

Thus, each flow of type f generates a number of packets that is distributed according to an inde-

pendent geometric random variable with mean1 1/µf , and the flow departure process for flows of

type f is a Poisson process of rate µfXf (t) at time t. We can summarize the flow count process

Nf (·) by the transitions

Nf (t) →

{

Nf (t) + 1 at rate νf ,

Nf (t)− 1 at rate µfXf (t).

Define the offered load vector ρ ∈ R
F
+ by ρf , νf/µf , for each flow type f . Without loss of

generality, we will make the following assumptions:2

• ρ > 0, i.e., we restrict attention to flows with a non-trivial loading.

• ρ < C1, i.e., we assume that the maximal service rate C is sufficient for the load generated

by any single flow type.

• ΞΓρ > 0, i.e., we restrict attention to queues with a non-trivial loadings.

1The assumption that µf < 1 is equivalent to requiring that 1/µf > 1, i.e., each flow is expected to generate more

than one packet. This is reasonable since we require flows to arrive with at least one packet and for there to be some

variability in the number of packets associated with a flow.
2In what follows, inequalities between vectors are to be interpreted component-wise. The vector 0 (resp., 1) is the

vector where every component is 0 (resp., 1), and whose dimension should be inferred from the context.
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6 C. C. Moallemi & D. Shah

Denote by Af (t) the cumulative number of flows of type f that have arrived in the time interval

[0, t]. Denote the cumulative number of packets generated by flows of type f in the time interval

[0, t] by Af (t). We suggest that the reader take note of difference between Af (·) and Af (·). Let

Df (t) denote the cumulative number of flows of type f that have departed in the time interval

[0, t]. The evolution of the flow count for flow type f over time can be written as

Nf (t) = Nf (0) + Af (t)−Df (t). (2)

2.3. Dynamics: Packet-Level

As we have just described, flows generate packets which are injected into the network. These packets

must traverse the links of the network from source to destination. In this section, we describe the

dynamics of packets in the network.

We assume that each queue in the network is capable of transmitting at most 1 data packet per

unit time. However, the collection of queues that can simultaneously transmit is restricted by a set

of scheduling constraints. These scheduling constraints are meant to capture any limitations of the

network due to scarce resources (e.g., limited wireless bandwidth, limited link capacity, switching

constraints, etc.).

Formally, the scheduling constraints are described by the set S ⊂ {0, 1}E . Under a permissible

schedule π ∈ S, a packet will be transmitted from a queue e ∈ E if and only if πe = 1. We assume

that 0 ∈ S. We require that each queue e be served by some schedule, i.e., there exists a π ∈ S with

πe = 1.Further, we assume that S is monotone: if σ ∈ S and σ′ ∈ {0, 1}E is such that σ′
e ≤ σe for

every queue e, then σ′ ∈ S. Finally, denote by Π ∈ {0, 1}E×S the matrix with columns consisting

of the elements of S.

We assume that the scheduling of packets happens at every integer time. At a time τ ∈ Z+, let

π(τ) ∈ S denote the scheduled queues for the time interval [τ, τ + 1). For each queue e, denote by

Qe(τ
−) the length of the queue e immediately prior to the time τ (i.e., before scheduling happens).

The queue length evolves, for times t ∈ [τ, τ + 1) according to3

Qe(t) , Qe(τ
−)− πe(τ)I{Qe(τ−)>0} +

∑

f∈F

Γef

(
Af (t)−Af (τ

−)
)
+
∑

e′∈E

Re′eπe′(τ)I{Qe′(τ
−)>0}.

Here, for each flow type f , Af (τ
−) is the cumulative number of packets generated by flows of type

f in the time interval [0, τ). The term πe(τ)I{Qe(τ)>0} enforces an idling constraint, i.e., if queue e

is scheduled but empty, no packet departs. Note that, over a time interval [τ, τ +1), we assume the

transmission of packets already present in the network occurs instantly at time τ , while the arrival

of new packets to the network occurs continuously throughout the entire time interval.

Finally, let Sπ(τ) denote the cumulative number of time slots during which the schedule π was

employed up to and including time τ . Let Ze(τ) denote the cumulative idling time for queue e up

to and including time τ . That is,

Ze(τ) ,
τ∑

s=0

∑

π∈S

πe
(
Sπ(s)− Sπ(s − 1)

)
I{Qe(s)=0}.

3
I{·} denotes the indicator function.
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Then, the overall queue length evolution can be written in vector form as

Q(τ + 1) = Q(0)−
(
I −R⊤

)
ΠS(τ) +

(
I −R⊤

)
Z(τ) + ΓA(τ + 1), (3)

where we define the vectors

Q(t) ,
[
Qe(t)

]

e∈E
, A(t) ,

[
Af (t)

]

f∈F
,

S(τ) ,
[
Sπ(τ)

]

π∈S
, Z(τ) ,

[
Ze(t)

]

e∈E
.

3. MWUM Control Policy

A network control policy is a rule that, at each point in time, provides two types of decisions: (a)

the rate of service provided to each flow, and (b) the scheduling of packets subject to the physical

constraints in the network. In Section 2, we described the stochastic evolution of flows and packets

in the network, taking as given the network control policy. In this section, we describe a control

policy called the maximum weight utility maximization-α (MWUM-α) policy. MWUM-α takes as a

parameter a scalar α ∈ (0,∞) \ {1}.

TheMWUM-α policy is myopic and based only on local information. Specifically, a flow generates

packets at rate that is based on the queue length at its ingress, and the scheduling of packets is

decided as a function of the effected queue lengths.

At the flow-level, rate allocation decisions are made according to a per flow utility maximization

problem. Each flow chooses a rate so as to myopically maximize its utility as a function of rate

consumption, subject to a linear penalty (or, ‘price’) for consuming limited network resources. As

in the case of α-fair rate allocation, the utility function is assumed to have a constant relative risk

aversion of α. The price charged is a function of the number of packets queued at the ingress queue

associated with the flow, raised to the α power.

At the packet-level, packets are scheduled according to a maximum weight-α scheduling algo-

rithm. In particular, each queue is assigned a weight equal to the number of queued packets to the

α power, and a schedule is picked which maximizes the total weight of all scheduled queues.

3.1. Control: Rate Allocation

The first control decision we shall consider is that of rate allocation, or, the determination of the

aggregate rate of service Xf (t), at time t, for flows of type f . We will assume our network is governed

by a variant of an α-fair rate allocation policy. This is as follows:

Assume that each flow of type f is allocated a rate Yf (t) ≥ 0 at time t by maximizing a (per

flow) utility function that depends on the allocated rate, subject to a linear penalty (or, cost) for

consuming resources from the limited capacity of the network. In particular, we will assume a utility

function given a rate allocation of y ≥ 0 to an individual flow of type f of the form

Vf (y) ,
y1−α

1− α
,

for some α ∈ (0,∞) \ {1}. This utility function is popularly known as α-fair in the congestion

control literature [19], and has a constant relative risk aversion of α. The individual flow will be
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8 C. C. Moallemi & D. Shah

assigned capacity according to

Yf (t) ∈ argmax
y≥0

Vf (y)−Qα
ι(f)(t)y.

Here, Qα
i(f)(t) represents a ‘price’ or ‘congestion signal’. Intuitively, a flow reacts to the congestion

in the network (or lack thereof) through the length of the ingress or ‘first-hop’ queue ι(f). Then,

if Nf (t) > 0, the aggregate rate Xf (t) allocated to all flows of type f at time t is determined

according to

Xf (t) = Nf (t)Yf (t) = argmax
x≥0

x1−αNα
f (t)

1− α
−Qα

ι(f)(t)x.

If Nf (t) = 0, we require that Xf (t) = 0. Further, we will constrain the overall rate allocated to

flows of type f by the constant C. Thus, rate allocation is determined by the equation

Xf (t) =







argmax
x∈[0,C]

x1−αNα
f (t)

1− α
−Qα

ι(f)(t)x if Nf (t) > 0,

0 otherwise.

Given the strictly concave nature of the objective in this optimization program, it is clear that the

maximizer is unique and Xf (t) is well-defined.

Denote by X̄f (t) the cumulative rate allocation to flows of type f in the time interval [0, t], i.e.,

X̄f (t) ,

∫ t

0
Xf (s) ds.

X̄f (·) is Lipschitz continuous and differentiable, since Xf (·) is always bounded by C.

3.2. Control: Scheduling

The second control decision that must be specified is that of scheduling. We will assume the fol-

lowing variation of the ‘maximum weight’ or ‘back-pressure’ policies introduced by Tassiulas and

Ephremides [30].

At the beginning of each discrete-time slot τ ∈ Z+, a schedule π(τ) ∈ S is chosen according to

the optimization problem

π(τ) ∈ argmax
π∈S

∑

e∈E

πe

[

Qα
e (τ

−)−
∑

e′∈E

Ree′Q
α
e′(τ

−)

]

= argmax
π∈S

π⊤(I −R)Qα(τ−),

(4)

where Qα(τ−) ,
[
Qα

e (τ
−)
]

e∈E
is a vector of component-wise powers of queue lengths, immediately

prior to time τ . In other words, the schedule π(τ) is chosen so as to maximize the summation of

weights of queues served, where weight of a queue e ∈ E is given by
[
(I−R)Qα(τ−)

]

e
. Given that S

is monotone, there exists a π ∈ S that maximizes this weight and is such that πe = 0 if Qe(τ
−) = 0.

We will restrict our attention to such schedules only. From this, it follows that the objective value

of the optimization program in (4) is always non-negative.

By the discussion above, it is clear that the following invariants are satisfied:

imsart-generic ver. 2009/08/13 file: flow-level-journal.tex date: March 3, 2010



On the Flow-level Dynamics of a Packet-switched Network 9

1. For any schedule π and time τ , Sπ(τ) = Sπ(τ − 1) if

π⊤(I −R)Qα(τ−) < σ⊤(I −R)Qα(τ−),

for some σ ∈ S.

2. For any queue e and time τ , Ze(τ) = 0. In other words, there is no idling.

4. Fluid Model

In this section, we introduce the fluid model of the our system. As we shall see, the allocation of rate

to flows in the fluid model resembles rate allocation of ‘flow-level’ models that has been popular

in the literature [17, 3]. In that sense, our model on original time-scale operates at a packet-level

granularity and on the fluid-scale operates at a flow-level granularity.

4.1. Fluid Scaling and Fluid Model Equations

In order to introduce the fluid model of our network, we will consider the scaled version of the

system. To this end, denote the overall system state at a time t ≥ 0 by

Z(t) ,
(

Q(t), Z(⌊t⌋), N(t), S(⌊t⌋), X̄ (t),A(t),D(t), A(t)
)

.

Here, the components of the state Z(t) are the primitives introduced in Sections 2.2 and 2.3. That

is, at times t ∈ R+, we have,

Q(t) ,
[
Qe(t)

]

e∈E
, where Qe(t) is the length of queue e,

N(t) ,
[
Nf (t)

]

f∈F
, where Nf (t) is the number of flows of type f ,

X̄(t) ,
[
X̄f (t)

]

f∈F
, where X̄f (t) is the cumulative rate allocated to flow type f ,

A(t) ,
[
Af (t)

]

f∈F
, where Af (t) is the cumulative arrival count of flow type f ,

D(t) ,
[
Df (t)

]

f∈F
, where Df (t) is the cumulative departure count of flow type f,

A(t) ,
[
Af (t)

]

f∈F
, where Af (t) is the cumulative packet arrival count of flow type f ,

and, at times τ ∈ Z+, we have

Z(τ) ,
[
Ze(τ)

]

e∈E
, where Ze(τ) is the cumulative idleness for queue e,

S(τ) ,
[
Sπ(τ)

]

π∈S
, where Sπ(τ) is the cumulative time schedule π is employed.

Given a scaling parameter r ∈ R, r ≥ 1, define the scaled system state as

Z(r)(t) ,
(

Q(r)(t), Z(r)(t), N (r)(t), S(r)(t), X̄(r)(t),A(r)(t),D(r)(t), A(r)(t)
)

. (5)

Here, the scaled components are defined as

Q(r)(t) , r−1Q(rt), N (r)(t), r−1N(rt),

X̄(r)(t), r−1X̄(rt), A(r)(t) , r−1A(rt),

D(r)(t), r−1D(rt), A(r)(t) , r−1A(rt),

Z(r)(t) , r−1
[
(rt− ⌊rt⌋)Z(⌈rt⌉) + (⌈rt⌉ − rt)Z(⌊rt⌋)

]
,

S(r)(t) , r−1
[
(rt− ⌊rt⌋)S(⌈rt⌉) + (⌈rt⌉ − rt)S(⌊rt⌋)

]
.
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10 C. C. Moallemi & D. Shah

In the above, the components Z(·) and S(·) are linearly interpolated for technical convenience only.

Our interest is in understanding the behavior of Z(r)(·) as r → ∞. Roughly speaking, in this

limiting system the trajectories will satisfy certain deterministic equations, called fluid model equa-

tions. Solutions to these equations, which are defined below, will be denoted as fluid model solutions.

The formal result is stated in Theorem 1.

Definition 1 (Fluid Model Solution). Given fixed initial conditions q(0) ∈ R
E
+ and n(0) ∈ R

F
+,

for every time horizon T > 0, let FMS(T ) denote the set of all trajectories

z(t) ,
(
q(t), z(t), n(t), s(t), x̄(t), a(t), d(t), a(t)

)

∈ Z , R
E
+ × R

E
+ × R

F
+ × R

S
+ × R

F
+ × R

F
+ × R

F
+ × R

F
+, (6)

over the time interval [0, T ] such that:

(F1) All components of z(t) are uniformly Lipschitz continuous and thus differentiable for almost

every t ∈ (0, T ). Such values of t are known as regular points.

(F2) For all t ∈ [0, T ], n(t) = n(0) + a(t)− d(t).

(F3) For all t ∈ [0, T ], a(t) = νt.

(F4) For all t ∈ [0, T ], d(t) = diag(µ)x̄(t).

(F5) For all t ∈ [0, T ],

q(t) = q(0)−
(
I −R⊤

)
Πs(t) +

(
I −R⊤

)
z(t) + Γa(t).

(F6) For all t ∈ [0, T ], a(t) = x̄(t).

(F7) For all t ∈ [0, T ], 1⊤s(t) = t.

(F8) Each component of z(·), s(·), and x̄(·) is non-decreasing.

In addition, define the set FMS
α(T ) to be the subset of trajectories in FMS(T ) that also satisfy:

(F9) If t ∈ (0, T ) is a regular point, then for all f ∈ F ,

xf (t) =







argmax
x∈[0,C]

x1−αnα
f (t)

1− α
− qαι(f)(t)x if nf (t) > 0,

νf/µf (= ρf ) otherwise,

where4 xf (t) , ˙̄xf (t).

(F10) If t ∈ (0, T ) is a regular point, then for all π ∈ S, ṡπ(t) = 0, if

π⊤(I −R)qα(t) < max
σ∈S

σ⊤(I −R)qα(t).

(F11) If t ∈ (0, T ) is a regular point and nf (t) = 0 for some f ∈ F , then qι(f)(t) = 0.

(F12) For all t ∈ [0, T ], z(t) = 0.

Note that (F1)–(F8) correspond to fluid model equations that must be satisfied under any

scheduling policy, and, hence, are algorithm independent fluid model equations. On the other hand,

(F9)–(F12) are particular to networks controlled under the MWUM-α policy. (F9) captures the

long-term effect of the rate allocation mechanism through the α-fair utility maximization based

4We use the notation θ̇(t) to denote d
dt
θ(t) for θ : [0, T ] → R.
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On the Flow-level Dynamics of a Packet-switched Network 11

policy. Indeed, in a static resource allocation model, (F9) can be thought of as the primal update

in an algorithm that seeks to allocate rates to maximize the net α-fair utility of the flows subject

to capacity constraints. (F10) captures the effect of short-term packet-level behavior induced by

the scheduling algorithm. Specifically, the characteristics of the MW-α packet scheduling algorithm

are captured by this equation.

4.2. Formal Statement

We wish to establish fluid model solutions as limit of the scaled system state process Z(r)(·) as

r → ∞. To this end, fix a time horizon T > 0. Let D[0, T ] denote the space of all functions from

[0, T ] to Z, as defined in (6), that are right continuous with left limits (RCLL). We will denote

the Skorohod metric on this space by d(·, ·) (see Appendix B for details). Given a fixed scaling

parameter r, consider the scaled system dynamics over interval [0, T ]. Each sample path Z(r)(·) of

the system state is RCLL, and hence is contained in the space D[0, T ].

The following theorem formally establishes the convergence of the scaled system process to a

fluid model solution of the form specified in Definition 1.

Theorem 1. Given a fixed time horizon T > 0, consider a collection of scaled system state processes

{Z(r)(·) : r ≥ 1} ⊂ D[0, T ] under an arbitrary control policy. Suppose the initial conditions

lim
r→∞

Q(r)(0) = q(0), lim
r→∞

N (r)(0) = n(0), (7)

are satisfied with probability 1. Then, for any ε > 0,

lim inf
r→∞

P

(

Z(r)(·) ∈ FMSε(T )
)

= 1.

Here, FMSε(T ) is an ε-flattening of the set FMS(T ) of fluid model solutions, i.e.,

FMSε(T ) , {x ∈ D[0, T ] : d(x,y) < ε, y ∈ FMS(T )}.

Additionally, under the MWUM-α control policy, we have that

lim inf
r→∞

P

(

Z(r)(·) ∈ FMS
α
ε (T )

)

= 1.

Here, FMS
α
ε (T ) is an ε-flattening of the set FMS

α(T ) of MWUM-α fluid model solutions, i.e.,

FMS
α
ε (T ) , {x ∈ D[0, T ] : d(x,y) < ε, y ∈ FMS

α(T )}.

Theorem 1 can be established by following a somewhat standard sequence of arguments (cf.

[4, 25, 13]). First, the collection of measures corresponding to the collection of random processes

{Z(r)(·) : r ≥ 1} is shown to be tight. This establishes that limit points must exist. Next,

it is established that each limit point must satisfy the conditions of a fluid model solution with

probability 1. The tightness argument uses concentration properties of Poisson process along with

the Lipschitz property of queue length process. A detailed argument is required to establish that,

with probability 1, the conditions of fluid model solution are satisfied. The complete proof of

Theorem 1 is presented in Appendix B.
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12 C. C. Moallemi & D. Shah

5. System Stability

In this section, we characterize the stability of a network under the MWUM-α policy. In particular,

we shall see that the network evolves according to a Markov process is positive recurrent as long

as the system is underloaded. In other words, the system is maximally stable. In order to construct

the stability region under the MWUM-α policy, first define the set of packet arrival rates by

Λ ,

{

λ ∈ R
E
+ : ∃ s ∈ R

S
+ with λ ≤ Πs, 1⊤s ≤ 1

}

. (8)

Imagine that the network has no packet arrivals from flows, but instead has packets arriving ac-

cording to exogenous processes. Suppose that λ ∈ R
E
+ is the vector of exogenous arrival rates, so

that packets arrived to each queue e at rate λe. Then, it is not difficult to see that the network

would not be stable under any scheduling policy if λ /∈ Λ. This is because there is at least one

queue in the network that is loaded beyond its service capacity. Hence, the set Λ represents the

raw scheduling capacity of the network.

The set Λ can alternatively be described as follows: Given a vector λ ∈ R
E
+, consider the linear

program

PRIMAL(λ) , minimize
s

1⊤s

subject to λ ≤ Πs,

s ∈ R
S
+.

Clearly λ ∈ Λ if and only if PRIMAL(λ) ≤ 1. The quantity PRIMAL(λ) is called the effective load

of a system with exogenous packet arrivals at rate λ.

Now, in our model, packets arrive to the network not through an exogenous process, but rather,

they are generated by flows. As discussed in Section 2.2, each flow type f ∈ F generates packets at

according to an offered load of ρf . The generated packets are injected into the network according

to the ingress matrix Γ, and subsequently travel through the network along pre-determined paths

specified by the routing matrix R. Let λ ∈ R
E
+ be the vector of implied loads on the scheduling

network due to the packets generated by flows. It seems reasonable to relate λ and the vector

ρ ∈ R
F
+ of offered loads according to λ = Γρ + R⊤λ. Equivalently, we define λ , ΞΓρ, where Ξ is

from (1). We define the effective load L(ρ) of our network by L(ρ) , PRIMAL(ΞΓρ).

Given the above discussion, it seems natural to suspect that the network’s scheduling capacity

allows it to operate effectively as long as L(ρ) ≤ 1. This motivates the following definition:

Definition 2 (Admissibility). A vector ρ ∈ R
F
+ of offered loads admissible if L(ρ) ≤ 1. Similarly,

ρ is strictly admissible if L(ρ) < 1. Finally, ρ is critically admissible if L(ρ) = 1.

We will establish system stability, or, more formally, positive recurrence, when offered load is

strictly admissible. To this end, recall that the system is completely described by the Z(·) process.

Under the MWUM-α policy, the evolution of all the components of Z(·) is entirely determined by
(
N(·), Q(·)

)
. Further, the changes in

(
N(·), Q(·)

)
occur at times specified by the arrivals of a (time-

varying) Poisson process. Therefore, tuple
(
N(·), Q(·)

)
forms the state space of a continuous-time

Markov chain. The following is the main result of this section:

Theorem 2. Consider a network system with strictly admissible ρ operating under the MWUM-α

policy. Then, the Markov chain
(
N(·), Q(·)

)
is positive recurrent.
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On the Flow-level Dynamics of a Packet-switched Network 13

It is worth noting that if L(ρ) > 1, then at least one of the queues in the network must be,

on average, loaded beyond its capacity. Hence the network Markov process can not be positive

recurrent or stable.

The proof of Theorem 2, provided next in Section 5.1, uses a fluid model approach. Dai [5]

pioneered such an approach for a class of queueing networks. However, this result does not apply

to the present setting, and a specialized analysis is needed. Conceptually, the fluid model approach

involves two steps: (1) derive strong stability of fluid model, and (2) use strong stability to establish

the positive recurrence of the original Markov chain. To this end, define Lyapunov function Lα over

the vector of flow counts n = [nf ]f∈F ∈ R
F
+ and the vector of queue lengths q = [qe]e∈E ∈ R

E
+ by

Lα(n, q) ,
∑

f∈F

n1+α
f

µfρ
α
f

+
∑

e∈E

q1+α
e . (9)

The following lemma, whose proof is found in Section 5.2, provides a central argument towards

establishing the strong stability of the fluid model. This lemma will also be of use later in establishing

the characterization and attractiveness of invariant manifold under critical loading.

Lemma 3. Let
(
n(·), q(·)

)
be, respectively, the flow count process and the queue length process of

a fluid model solution in the set FMS
α(T ). If L(ρ) ≤ 1, then for every regular point t ∈ (0, T ),

d

dt
Lα

(
n(t), q(t)

)
≤ 0.

Suppose further that L(ρ) < 1. Then, there exist δ∗ > 0 and T∗ > 0 such that, for all T > T∗, if

the initial conditions
(
n(0), q(0)

)
satisfy

Lα

(
n(0), q(0)

)
= 1,

then

Lα

(
n(t), q(t)

)
≤ 1− δ∗, for all t ∈ [T∗, T ].

5.1. Proof of Theorem 2

The following lemma provides a sufficient condition for positive recurrence:

Lemma 4. [21, Theorem 8.13] Let X (·) be an irreducible, aperiodic jump Markov process on a

countable state space X. Suppose there exists a function V : X → R+, constants A and ε > 0, and

an integrable stopping time τ > 0 such that, for all x ∈ X with V (x) > A,

E [V (X (τ)) | X (0) = x] ≤ V (x)− εE[τ | X (0) = x].

If the set {x ∈ X : V (x) ≤ A} is finite and E[V (X (1)) | X (0) = x] < ∞ for all x ∈ X, then the

process X(·) is positive recurrent and ergodic.

Our proof of Theorem 2 relies on establishing the sufficient condition for positive recurrence given

by Lemma 4, using the stability of the fluid model (Lemma 3). To this end, note that under the

MWUM-α policy, X (t) ,
(
N(t), Q(t)

)
∈ Z

F
+ ×Z

E
+ is a jump Markov process. We shall use ‘normed’

version of the Lyapunov function Lα, defined as

ℓ(n, q) , (Lα(n, q))
1

1+α ,
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14 C. C. Moallemi & D. Shah

for all (n, q) ∈ R
F
+ × R

E
+. The role of V in Lemma 4 will be played by ℓ. Lemma 14 implies that

there exists constants 0 < C1 ≤ C2 < ∞ so that, for all (n, q),

C1‖(n, q)‖∞ ≤ ℓ(n, q) ≤ C2‖(n, q)‖∞. (10)

Further, for any κ > 0 and (n, q), we have that ℓ(κn, κq) = κℓ(n, q).

Now, consider any sequence of initial states
{

xk ,
(
Nk(0), Qk(0)

)
∈ Z

F
+ × Z

E
+ : k ∈ N

}

,

such that ‖xk‖∞ → ∞ as k → ∞. For each k, consider a system starting at the initial state xk.

Denote the state of the kth system at time t ≥ 0 by

X k(t) ,
(
Nk(t), Qk(t)

)
.

For each k ∈ N, define the scaling factor rk , ℓ
(
x(k)

)
, and notice that rk → ∞. Fix a time

horizon T > 0, and for the kth system, consider the scaled state process, defined for t ∈ [0, T ] as

X (rk)(t) ,
1

rk
X k(rkt) =

1

rk

(
Nk(rkt), Q

k(rkt)
)
,

The descriptor of the scaled system is given, for t ∈ [0, T ], by Z(rk)(t) from (5). Let µ(rk) be its

distribution on D[0, T ].

From (10), we have that, for any k,

‖X (rk)(0)‖∞ =
‖X k(0)‖∞

rk
≤ 1/C1. (11)

Since the set of scaled initial conditions is compact, there must exist a limit point and a convergence

subsequence. Along this subsequence, by the analysis of Theorem 1 (in particular, Lemma 17) the

measures {µ(rk)} are tight, and therefore, there exists a measure µ(∞) that is a limit point. By

restricting to a further subsequence, we can assume, without loss of generality, that µ(rk) ⇒ µ(∞)

as k → ∞. That is,
(
Z(rk)(t)

)

t∈[0,T ]
⇒
(
z(t)
)

t∈[0,T ]
, as k → ∞,

with z(·) ∈ FMS
α(T ) satisfying the fluid model equations.

Given a fluid model solution z(·) of the form (6), denote by
(
n(·), q(·)

)
the flow count and queue

length components. Note that ℓ
(
X (rk)(0)

)
= 1, for all k. By the continuity of ℓ, we have that

ℓ
(
n(0), q(0)) = 1; that is Lα

(
n(0), q(0)

)
= 1. Then, from Lemma 3, there exist δ∗ > 0 and T∗ > 0

so that, for sufficiently large T ,

ℓ
(
n(t), q(t)

)
≤ 1− δ∗, for all t ∈ [T∗, T ]. (12)

Define the functional F : D[0, T ] → R+ by

F
((

z(t)
)

t∈[0,T ]

)

,
1

T − T∗

∫ T

T∗

ℓ
(
n(t), q(t)

)
dt.

Since F is a continuous, it follows that

F
((

Z(rk)(t)
)

t∈[0,T ]

)

⇒ F
((

z(t)
)

t∈[0,T ]

)

, as k → ∞. (13)
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Further, from (11), and using the fact that the arrival processes are Poisson and the boundedness

of the rate allocation policies, it follows that for all t ∈ [0, T ] and all k ∈ N,

E

[∥
∥
∥

(
N (rk)(t), Q(rk)(t))

∥
∥
∥
∞

]

≤ C3T, (14)

for some constant C3 > 0. From this, the uniform integrability of F
(
Z(rk)(·)

)
follows. Subsequently,

from (12) and (13), it follows that

lim
k→∞

E

[

F
((

Z(rk)(t)
)

t∈[0,T ]

)]

≤ 1− δ∗.

Equivalently, in terms of the unscaled state process X (·), we have that

lim
k→∞

1

ℓ(xk)
E

[
1

T − T∗

∫ T

T∗

ℓ
(

X
(

ℓ
(
xk
)
t
))

dt

∣
∣
∣
∣
X (0) = xk

]

≤ 1− δ∗. (15)

To complete the proof of Theorem 2, define U to be a random variable that is uniformly distributed

over [T∗, T ]. Define the stopping time τ , ℓ
(
X (0)

)
U . Note that

E [τ | X (0) = x] = 1
2ℓ(x)(T + T∗).

Then, (15) implies that, for all initial states x ∈ Z
F
+ × Z

E
+ with ℓ(x) sufficiently large,

E
[
ℓ
(
X (τ)

) ∣
∣ X (0) = x

]
≤ ℓ(x)− εE [τ | X (0) = x] ,

where the constant ε is chosen so that 0 < ε < 2δ∗/(T + T∗). This satisfies the conditions of

Lemma 4, and hence completes the proof of Theorem 2.

5.2. Proof of Lemma 3

Suppose t ∈ (0, T ) is a regular point. We will start by establishing the first part of Lemma 3: if

L(ρ) ≤ 1, then d
dtLα

(
n(t), q(t)

)
≤ 0. To this end, note that

d

dt
Lα

(
n(t), q(t)

)
= (1 + α)

(
∑

f∈F

nα
f (t)

µfρ
α
f

ṅf (t)

︸ ︷︷ ︸

∆n

+
∑

e∈E

qαe (t)q̇e(t)

︸ ︷︷ ︸

∆q

)

. (16)

We consider the terms ∆n and ∆q separately.

First, consider the term ∆n. For each flow type f , we wish to show that

nα
f (t)

µfρ
α
f

ṅf (t) ≤ qαι(f)(t)
(
ρf − xf (t)

)
. (17)

By (F2)–(F4), ṅf (t) = νf − µfxf (t). There are two cases. If nf (t) = 0, then by (F9), we have that

xf (t) = ρf , thus both sides of (17) are 0. If nf (t) > 0, then

nα
f (t)

µfρ
α
f

ṅf (t) =
nα
f (t)

ραf

(
ρf − xf (t)

)
≤ nα

f (t)
ρ1−α
f

1− α
− nα

f (t)
x1−α
f (t)

1− α
. (18)
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Here, the inequality follows from the fact that the function g(z) , z1−α/(1 − α) is concave. For a

concave function g, g′(y)(y−x) ≤ g(y)−g(x), here we have x = xf (t) and y = ρf . Now, since xf (t)

is optimal for the rate allocation problem of (F9) and ρf is feasible, we have that

nα
f (t)

x1−α
f (t)

1− α
− qαι(f)(t)xf (t) ≥ nα

f (t)
ρ1−α
f

1− α
− qαι(f)(t)ρf . (19)

Combining (18) and (19), we have established (17). Then, we can sum (17) over all f ∈ F , to obtain

∆n ≤
[
Γ
(
ρ− x(t)

)]⊤
qα(t). (20)

Now, consider the term ∆q in (16). (F5), (F6), and (F12) imply that

q̇(t) = −(I −R⊤)Πṡ(t) + Γx(t). (21)

From (F7) and (F10),

[(
I −R⊤

)
Πṡ(t)

]⊤
qα(t) =

∑

π∈S

ṡπ(t)π
⊤(I −R)qα(t) = max

σ∈S
σ⊤(I −R)qα(t). (22)

Together (21) and (22), imply that

∆q ≤ [Γx(t)]⊤ qα(t)−max
σ∈S

σ⊤(I −R)qα(t). (23)

Now, combining (16), (20), and (23), we have that

d

dt
Lα

(
n(t), q(t)

)
≤ (1 + α)

(

[Γρ]⊤ qα(t)−max
σ∈S

σ⊤(I −R)qα(t)

)

. (24)

By the definition of L(ρ) , PRIMAL(ΞΓρ), there exists some s ∈ R
S
+ with 1⊤s = L(ρ) and

Γρ ≤
(
I −R⊤

)
Πs =

∑

π∈S

sπ
(
I −R⊤

)
π.

This implies that

[Γρ]⊤ qα(t) ≤ L(ρ)max
σ∈S

σ⊤(I −R)qα(t),

Hence, by (24),

d

dt
Lα

(
n(t), q(t)

)
≤ −(1 + α)

(
1− L(ρ)

)
max
σ∈S

σ⊤(I −R)qα(t). (25)

In order to bound the right hand side of (25), we will argue that

max
σ∈S

σ⊤(I −R)qα(t) ≥
1⊤qα(t)

|E|2
. (26)

To see this, consider a queue e0 ∈ E with maximal length at time t, i.e., qe0(t) = maxe qe(t). Define

e1, . . . , eJ ∈ E to be a sequence of distinct queues so that, for each 0 ≤ i < J , packets departing

from queue ei go to queue ei+1, and packets departing from queue eJ exist the network. By our

assumption of acyclic routing, such a sequence exists, and since each queue is distinct, J +1 ≤ |E|.
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Consider the distinct schedules π0, . . . , πJ ∈ S, where, for 0 ≤ i ≤ J , the schedule πi serves exactly

the queue ei — such schedules exist by the monotonicity assumption on the scheduling constraints.

Clearly, these schedules have weights given by

π⊤
i (I −R)qα(t) =

{

qαei(t)− qαei+1
(t) if 0 ≤ i < J ,

qαeJ (t) if i = J .

Averaging over the J + 1 schedules,

1

J + 1

J∑

i=0

π⊤
i (I −R)qα(t) =

qαe0(t)

J + 1
.

Since at least one schedule must have a weight that exceeds this average,

max
σ∈S

σ⊤(I −R)qα(t) ≥
qαe0(t)

J + 1
≥

maxe∈E q
α
e (t)

|E|

Since

max
e∈E

qαe (t) ≥
1⊤qα(t)

|E|
,

(26) follows.

Combining (25) and (26), we obtain, when L(ρ) ≤ 1,

d

dt
Lα

(
n(t), q(t)

)
≤ −(1 + α)

(
1− L(ρ)

)1⊤qα(t)

|E|2
≤ 0. (27)

This establishes the first part of Lemma 3.

To prove the second part of Lemma 3, we will consider two separate cases over initial conditions
(
n(0), q(0)

)
with Lα

(
n(0), q(0)

)
= 1:

(i) 1⊤q1+α(0) > ε1.

(ii) 1⊤q1+α(0) ≤ ε1.

Here, ε1 > 0 is a constant that will be determined shortly.

For case (i), from the norm inequality in part (i) of Lemma 14, we have that

ε
1

1+α

1 < ‖q(0)‖1+α ≤ ‖q(0)‖α,

Thus, 1⊤qα(0) > ε2 , ε
α

1+α

1 . Due to (F1), q(·) is uniformly Lipschitz continuous, there exists T1 > 0

such that 1⊤qα(t) ≥ ε2/2 for all t ∈ [0, T1]. From (27), since L(ρ) < 1,we have that

d

dt
Lα

(
n(t), q(t)

)
≤ −(1 + α)

(
1− L(ρ)

) ε2
2|E|2

< 0,

for all regular t ∈ (0, T1]. Therefore, there exists δ1 > 0 so that

Lα

(
n(t), q(t)

)
≤ 1− δ1, (28)

for all t ≥ T1.
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For case (ii), the argument is more complicated. The basic insight is as follows: if 1⊤q1+α(0) is

small, then ∆q in (16) must be small as well. Further, a good fraction of the flows will be allocated

the maximal rate (i.e., C), therefore ∆n in (16) will be significantly negative. This will leads to

strictly negative drift in L. We will now formalize this intuition and make an appropriate choice of

ε1 > 0 along the way.

First, by the Lipschitz continuity of q(·), there exists some τ1 > 0 such that, for all t ∈ [0, τ1],

1⊤q1+α(t) ≤ 2ε1. Note that from (23), the fact that 0 ∈ S, and x(t) ≤ C1, for all regular t ∈ (0, τ1],

∆q ≤ [Γx(t)]⊤ qα(t) ≤ C1⊤qα(t).

By Jensen’s inequality,
(

1

|F|
1⊤qα(t)

) 1+α
α

≤
1

|F|
1⊤q1+α(t).

Therefore, for regular t ∈ (0, τ1],

∆q ≤ C|F|
1

1+α (2ε1)
α

1+α . (29)

Again using the fact that 1⊤q1+α(t) ≤ 2ε1 for t ∈ [0, τ1], it follows that qe(t) ≤ ε3 , (2ε1)
1/1+α,

for all e ∈ E . Now, consider the set

F ′ , {f ∈ F : nf (0) ≥ 4Cε3}.

By Lipschitz continuity, there exists some 0 < T2 < τ1 such that, for all f ∈ F ′ and all t ∈ [0, T2],

nf (t) ≥ 2Cε3. Then, by (F9), xf (t) = C for regular t ∈ (0, T2]. Thus, if f ∈ F ′, we have, for regular

t ∈ (0, T2],
nα
f (t)

µfρ
α
f

ṅf (t) =
nα
f (t)

µfρ
α
f

(
ρf − xf (t)

)
≤ −

nα
f (t)

µfρ
α
f

(C − ρf ) ≤ −β1n
α
f (t), (30)

where we define

β1 , min
f∈F

C − ρf
µfρ

α
f

> 0.

Finally, if f /∈ F ′, we have, for regular t ∈ (0, T2],

nα
f (t)

µfρ
α
f

ṅf (t) =
nα
f (t)

µfρ
α
f

(
ρf − xf (t)

)
≤

(2C)αρ1−α
f ε

α
1+α

1

µf
≤ β2(2C)αε

α
1+α

1 , (31)

where we define

β2 , max
f∈F

ρ1−α
f

µf
.

Using (16) and (29)–(31), it follows that, for all t ∈ [0, T2],

d

dt
Lα

(
n(t), q(t)

)
≤ (1 + α)





[

C|F|
1

1+α + β2|F|(2C)α
]

ε
α

1+α

1 − β1
∑

f∈F ′

nα
f (t)



 . (32)

From (27), for all t ≥ 0, Lα

(
n(t), q(t)

)
≤ 1. For t ∈ [0, T2], 1

⊤q(t)1+α ≤ 2ε1. Suppose that ε1 < 1/4.

Then,
∑

f∈F ′

n1+α
f (t) ≥

1− 2ε1

maxf∈F
1

µfρ
α
f

≥
1

4maxf∈F
1

µfρ
α
f

.
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for t ∈ [0, T2]. From part (i) of Lemma 14,

∑

f∈F ′

nα
f (t) ≥




1

4maxf∈F
1

µfρ
α
f





α
1+α

, β3 > 0.

Then, for regular t ∈ (0, T2],

d

dt
Lα

(
n(t), q(t)

)
≤ −(1 + α)β1β3/2 < 0.

It follows that there exists δ2 > 0 such that, for all t ≥ T2,

Lα

(
n(t), q(t)

)
≤ 1− δ2. (33)

Lemma 3 follows from (28) and (33) with δ∗ = min{δ1, δ2} and T∗ = max{T1, T2}.

6. Critical Loading

We have established the throughput optimality of the system under theMWUM-α control policy, for

any α ∈ (0,∞) \ {1}. Thus, this entire family of policies possesses good first order characteristics.

Further, there may be many other throughput optimal policies outside the class of MWUM-α

policies. This naturally raises the question of whether there is a ‘best’ choice of α, and how the

resulting MWUM-α policy might compare against the universe of all other policies.

In order to answer these questions, we desire a more refined analysis of policy performance than

throughput optimality. One way to obtain such an analysis is via the study of a critically loaded

system, i.e., a system with critically admissible arrival rates. Under a critical loading, fluid model

solutions take non-trivial values over entire horizon. In contrast, for strictly admissible systems

under throughput optimal policies, all fluid trajectories go to 0 (cf. Lemma 3). We will employ the

study of the fluid model solutions of critically loaded systems as a tool for the comparative analysis

of network control policies.

In particular, given a vector of flow counts, n ∈ R
F
+, and the vector of queue lengths, q ∈ R

E
+,

define the linear cost function

c(n, q) ,
∑

f∈F

nf

µf
+
∑

e∈E

qe = 1⊤
[
Γdiag(µ−1)n+ q

]
. (34)

This cost function is analogous to a ‘minimum delay’ objective in a packet-level queueing network:

a cost is incurred for each queued packet, and a cost is also incurred for each outstanding flow,

proportional to the number of packets that it is expected to generate.

In this section, we establish fundamental lower bounds that apply to the cost incurred in a

critically loaded fluid model under any scheduling policy. In Sections 7 and 8, we will compare

these with the costs incurred by MWUM-α control policies. We shall find that as α → 0+, the cost

induced by the MWUM-α algorithms improves and becomes close to the algorithm independent

lower bound
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6.1. Virtual Resources and Workload

We begin with some definitions. First, consider the dual of the LP PRIMAL(λ),

DUAL(λ) , maximize
ζ

λ⊤ζ

subject to Π⊤ζ ≤ 1,

ζ ∈ RE
+.

Note that there is no duality gap, thus the value of PRIMAL(λ) is equal to the value of DUAL(λ).

Definition 3 (Virtual Resource). We will call any feasible solution ζ ∈ R
E
+ of dual optimization

problem DUAL(ΞΓρ) a virtual resource. Suppose the system is critically loaded, i.e., the offered

load vector ρ satisfies

L(ρ) = PRIMAL(ΞΓρ) = DUAL(ΞΓρ) = 1.

Then, we call a virtual resource that is an optimal solution of DUAL(ΞΓρ) a critical virtual

resource.

For a critically loaded system with offered load vector ρ, let CR(ρ) denote the set of all critical

virtual resources. Note that CR(ρ) is a bounded polytope and hence possesses finitely many extreme

points. Let CR∗(ρ) denote the set of extreme points of CR(ρ).

The following definition captures the amount of ‘work’ associated with a critical resource, as a

function of the current state of the system.

Definition 4 (Workload). Consider a critically loaded system with an offered load vector ρ and

a critical virtual resource ζ ∈ CR(ρ). If the flow count and queue length vectors are given by (n, q),

the workload associated with the resource ζ is defined to be

wζ(n, q) , ζ⊤Ξ
[
q + Γdiag(µ)−1n

]
.

6.2. A Lower Bound on Fluid Trajectories

Consider a critically loaded system with offered load vector ρ. We claim that the following funda-

mental lower bound holds on the fluid trajectory under any algorithm. This bound can be thought

of as a minimal work-conservation requirement.

Lemma 5. Consider the fluid model trajectory of system under any scheduling and rate allocation

policy, with flow count and queue length processes given by
(
n(·), q(·)

)
. Then, for any time t ≥ 0

and any critical virtual resource ζ ∈ CR(ρ),

wζ

(
n(0), q(0)

)
≤ wζ

(
n(t), q(t)

)
. (35)

Proof. Given a time interval [0, T ], for any T > 0, consider the fluid model trajectory z(·) of the

form (6). By Theorem 1, this fluid trajectory must satisfy the algorithm independent fluid model

equations (F1)–(F8). By (F1), the trajectory is Lipschitz continuous and differentiable for almost

all t ∈ (0, T ). For any such regular point t, by (F2)–(F4), we have

ṅ(t) = ν − diag(µ) ˙̄x(t).
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Thus,

Γ diag(µ−1)ṅ(t) = Γρ− Γ ˙̄x(t). (36)

From (F5)–(F6), we obtain

q̇(t) =
(

I −R⊤
)

ż(t)−
(

I −R⊤
)

Πṡ(t) + Γ ˙̄x(t). (37)

Adding (36) and (37), we obtain

q̇(t) + Γdiag(µ−1)ṅ(t) = Γρ+
(

I −R⊤
)

(ż(t)−Πṡ(t)) .

Now, multiplying both sides by Ξ ,
(
I −R⊤

)−1
, we obtain

Ξ
[
q̇(t) + Γdiag(µ−1)ṅ(t)

]
= ΞΓρ+ ż(t)−Πṡ(t). (38)

Consider a critical virtual resource ζ ∈ CR(ρ). Since ζ is DUAL(ΞΓρ) optimal, ζ⊤ΞΓρ = 1. Taking

an inner product of (38) with ζ, we obtain

ζ⊤Ξ
[
q̇(t) + Γdiag(µ−1)ṅ(t)

]
= 1 + ζ⊤ż(t)− ζ⊤Πṡ(t). (39)

Now, by (F8), z(·) is non-decreasing. Since ζ is non-negative, then ζ⊤ż(t) ≥ 0. By (F8), ṡ(t) is

non-negative. Since ζ is DUAL(ΞΓρ) feasible and from (F7), it follows that ζ⊤Πṡ(t) ≤ 1⊤ṡ(t) = 1.

Applying these observations to (39), it follows that

d

dt
wζ

(
n(t), q(t)

)
= ζ⊤Ξ

[
q̇(t) + Γdiag(µ−1)ṅ(t)

]
≥ 0.

Given that
(
n(·), q(·)

)
is Lipschitz continuous, the desired result follows immediately. �

Lemma 5 guarantees the conservation of workload under any policy. This motivates the effective

cost of a state (n, q) ∈ R
F
+ × R

E
+, defined by the linear program

c∗(n, q) , minimize
n′,q′

c(n′, q′)

subject to wζ(n
′, q′) ≥ wζ(n, q), ∀ ζ ∈ CR

∗(ρ),

n ∈ R
F
+, q ∈ R

E
+.

(40)

The effective cost is the lowest cost of any state with at least as much workload as (n, q). We have

the following lower bound on the cost achieved under any fluid trajectory:

Theorem 6. Consider fluid model trajectory of system under any scheduling and rate allocation

policy, with flow count and queue length processes given by
(
n(·), q(·)

)
. Then, for any time t ≥ 0,

the instantaneous cost c
(
n(t), q(t)

)
is bounded below according to

c∗
(
n(0), q(0)

)
≤ c
(
n(t), q(t)

)
. (41)

Proof. By Lemma 5, if the initial condition of a fluid trajectory satisfies
(
n(0), q(0)

)
= (n, q), then

(
n(t), q(t)

)
is feasible for (40) for every t ≥ 0. The result immediately follows. �
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7. Balanced Systems

In this section, we will develop a bound on the cost achieved in a fluid model solution under the

MWUM-α policy. In particular, we will establish that this cost, at any instant of time, is within a

constant factor of the cost achievable under any policy. The constant factor is uniform across the

entire fluid trajectory, and relates to a notion of ‘balance’ of the critical resources of the network

that we will describe shortly.

We begin with a preliminary lemma, that provides an upper bound on the cost under theMWUM-

α policy. This upper bound is closely related to the Lyapunov function introduced earlier for

studying the system stability.

Lemma 7. Consider a fluid model trajectory of system under the MWUM-α policy, and denote the

flow count and queue length processes by
(
n(·), q(·)

)
. Suppose that the offered load vector ρ satisfies

L(ρ) ≤ 1. Then, at any time t ≥ 0, it must be that

c
(
n(t), q(t)

)
≤
(
1 + β(α)

)
c
(
n(0), q(0)

)
, (42)

where β(α) → 0 as α → 0+.

Proof. Recall the Lyapunov function Lα from (9). It follows from Lemma 3 that, so long as L(ρ) ≤ 1,

Lα

(
n(t), q(t)

)
≤ Lα

(
n(0), q(0)

)
. (43)

Applying Lemma 14, with p , 1 + α and d , |E|+ |F|,

∑

f∈F

nf (t)

µf

(
1

νf

) α
1+α

+
∑

e∈E

qe(t) ≤ d
α

1+α




∑

f∈F

nf (0)

µf

(
1

νf

) α
1+α

+
∑

e∈E

qe(0)



 .

Now, as α → 0+, d
α

1+α → 1. Also,

(
1

ν∗

) α
1+α

≤

(
1

νf

) α
1+α

≤

(
1

ν∗

) α
1+α

, (44)

where ν∗ , minf νf and ν∗ , maxf νf . Thus, as α → 0+, 1/νf → 1 uniformly over f . The result

then follows. �

The following definition is central to our performance guarantee:

Definition 5 (Balance Factor). Given a system that is critically loaded with offered load vector

ρ, define the balance factor as the value of the optimization problem

γ(ρ) , minimize
n,q,n′,q′

c(n′, q′)

subject to wζ(n
′, q′) ≥ wζ(n, q), ∀ ζ ∈ CR

∗(ρ),

c(n, q) = 1,

n, n′ ∈ R
F
+, q, q′ ∈ R

E
+.
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It is clear that γ(ρ) ≥ 0, since n′, q′ ≥ 0. Since there are feasible solutions with (n, q) = (n′, q′),

it is also true that γ(ρ) ≤ 1. In order to interpret γ(ρ), assume for the moment that there is

only a single critical extreme resource ζ ∈ CR
∗(ρ). If we define v , Ξ⊤ζ, then the constraint that

wζ(n
′, q′) ≥ wζ(n, q) is equivalent to

v⊤
[
Γdiag(µ)−1n′ + q′

]
≥ v⊤

[
Γdiag(µ)−1n+ q

]
.

In this case, it is clear that the solution to the LP defining γ(ρ) is given by

γ(ρ) = (min
e

ve)/(max
e

ve).

Hence, γ(ρ) is the measure of the degree of ‘balance’ of the influence of the critical resource ζ across

buffers in the network.

In the more general case (i.e., |CR∗(ρ)| ≥ 1), define the set V , span {Ξ⊤ζ : ζ ∈ CR
∗(ρ)}. It is

not difficult to see that γ(ρ) > 0 if and only if, for each queue e ∈ V, there exists some v ∈ V with

ve > 0, i.e., if every queue is influenced by some critical resource. We call networks where γ(ρ) > 0

balanced. In the extreme, if 1 ∈ V, then γ(ρ) = 1.

The following is the main theorem of this section. It offers a bound on the cost incurred at any

instant in time under the MWUM-α policy, relative that incurred under any other policy. This

bound is a function of the balance factor.

Theorem 8. Consider fluid model trajectory of a critically loaded system under the MWUM-α

policy and denote the flow count and queue length processes by
(
n(·), q(·)

)
. Suppose that γ(ρ) > 0.

Let
(
n′(·), q′(·)

)
be the flow count and queue length policies under an arbitrary policy given the same

initial conditions, i.e., n(0) = n′(0) and q(0) = q′(0). Then, at any time t ≥ 0, it must be that

c
(
n(t), q(t)

)
≤

1 + β(α)

γ(ρ)
c
(
n′(t), q′(t)

)
, (45)

where β(α) → 0 as α → 0+.

Proof. First, note that if
(
n(0), q(0)

)
= 0, i.e., the system is empty, then this holds for all t ≥ 0 (cf.

Theorem 10). In this case, (45) is immediate. Otherwise, fix t ≥ 0, and set c̄ , c
(
n(0), q(0)

)
> 0.

Define

(n′, q′) ,
(
n′(t), q′(t))/c̄, (n, q) ,

(
n(0), q(0))/c̄.

Using Lemma 5, it is clear that (n, q, n′, q′) is feasible for the LP defining γ(ρ). Thus,

c
(
n(0), q(0)

)
≤

1

γ(ρ)
c
(
n′(t), q′(t)

)
.

The result then follows by applying Lemma 7. �

8. Invariant Manifold

In Section 7, we proved a constant factor guarantee on the cost of the MWUM-α policy, relative

to the cost achieved under any other policy. Our bound held point-wise, at every instant of time.

However, the constant factor of the bound depends on the balance factor, and this could be very

large.
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In this section, we consider a different type of analysis. Instead of considering the evolution of the

fluid model for every time t, we instead examine the asymptotically limiting states of the fluid model

as t → ∞. In particular, we characterize these invariant states as fixed points in the solution space

of an optimization problem. We shall also show that these fixed points are attractive, i.e., starting

from any initial condition, the fluid trajectory reaches an invariant state. We will quantify time to

converge to the invariant manifold as a function of the initial conditions of the fluid trajectory.

This characterization of invariant states is key towards establishing the state space collapse

property of the system under a heavy traffic limit [4]. Moreover, we shall demonstrate that these

invariant states are cost optimal as α → 0+. In other words, the cost of an invariant state cannot

be improved by any policy.

8.1. Optimization Problems

We start with two useful optimization problems that will be useful in characterizing invariant states

of the fluid trajectory. We assume that the system is critically loaded.

Suppose we are given a state (n, q) ∈ R
F
+ × R

E
+ of, respectively, flow counts and queue lengths.

Define the optimization problem

ALGP(n, q) , minimize
n′,q′,t,x,σ

Lα(n
′, q′)

subject to n′ = n+ t
[
ν − diag(µ)x

]
,

q′ = q + t
[
Γx−

(
I −R⊤

)
σ
]
,

n′ ∈ R
F
+, q′ ∈ R

E
+, t ∈ R+,

x ∈ [0, C]F , σ ∈ Λ.

Here, recall that Λ is the scheduling capacity region of the network, defined by (8). Similarly, define

the optimization problem

bALGD(n, q) , minimize
n′,q′

Lα(n
′, q′)

subject to wζ(n
′, q′) ≥ wζ(n, q),

∀ ζ ∈ CR
∗(ρ),

n′ ∈ R
F
+, q′ ∈ R

E
+.

Intuitively, given a state (n, q), ALGP(n, q) finds a state (n′, q′) which minimizes the Lyapunov

function Lα and can be reached starting from (n, q), using feasible scheduling and rate allocation

decisions. ALGP(n, q), on the other hand, finds a state (n′, q′) which minimizes the Lyapunov

function and has at least as much workload as (n, q). The following result states that ALGP(n, q)

and bALGD(n, q) are equivalent optimization problems:

Lemma 9. A state (n′, q′) ∈ R
F
+ × R

E
+ is feasible for the optimization problem ALGP(n, q) if and

only if it is feasible for the optimization problem bALGD(n, q).

Proof. First, consider any (n′, q′, t, x, σ) that is feasible for ALGP(n, q). Note that feasibility for

ALGP(n, q) implies that

Γ diag(µ)−1n′ + q′ ≥ Γdiag(µ)−1n+ q + t
[

Γdiag(µ)−1ν − Γx
]

+ t
[

Γx−
(

I −R⊤
)

σ
]

.
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Therefore, if ζ ∈ CR
∗(ρ), we have that

wζ(n
′, q′) = wζ(n, q) + t

[

ζ⊤ΞΓρ− ζ⊤σ
]

.

Since σ ∈ Λ and ζ is feasible for DUAL(ΞΓρ), we have ζ⊤σ ≤ 1. Since ζ ∈ CR
∗(ρ), we have

ζ⊤ΞΓρ = 1. Therefore, as t ≥ 0, it follows that

wζ(n
′, q′) ≥ wζ(n, q).

That is, (n′, q′) is bALGD(n, q) feasible.

Next, assume that (n′, q′) is feasible for bALGD(n, q). Given some t ≥ 0, define

x , diag(µ)−1
[
ν − t−1(n′ − n)

]
, σ , Ξ

[
Γx− t−1(q′ − q)

]
.

With these definitions, if we establish existence of t ≥ 0 so that 0 ≤ x ≤ C1 and σ ∈ Λ, then

(n′, q′, t, x, σ) is feasible for ALGP(n, q) feasible.

Note that as t → ∞, x → ρ. By assumption, 0 < ρf < C, for all f ∈ F . Therefore, for t

sufficiently large, 0 ≤ x ≤ C1.

Next, we wish to show that, for t sufficiently large, σ ∈ Λ. This requirement is equivalent to

demonstrating that PRIMAL(σ) ≤ 1 and that σ ≥ 0. To show that PRIMAL(σ) ≤ 1, note that

PRIMAL(σ) = DUAL(σ) and suppose that ζ is feasible for DUAL(σ). Then,

ζ⊤σ = ζ⊤
[
ΞΓx− t−1(q′ − q)

]

= ζ⊤
[
ΞΓρ− t−1ΞΓdiag(µ)−1(n′ − n)− t−1(q′ − q)

]

= ζ⊤ΞΓρ− t−1
[
wζ(n

′, q′)− wζ(n, q)
]
.

If ζ ∈ CR(ρ), then

ζ⊤ΞΓρ = 1, and wζ(n
′, q′)− wζ(n, q) ≥ 0,

thus ζ⊤σ ≤ 1. On the other hand, if ζ /∈ CR(ρ), ζ⊤ΞΓρ < 1. Therefore, in any event, for t sufficiently

large, DUAL(ρ) ≤ 1.

To show that σ ≥ 0, note that

σ = Ξ
[
Γx− t−1(q′ − q)

]

= ΞΓρ− t−1
[
ΞΓdiag(µ)−1(n′ − n) + Ξ(q′ − q)

]
.

By assumption, ΞΓρ > 0. Therefore, for t sufficiently large enough, σ ≥ 0. �

8.2. Fixed Points: Characterization

Note that the optimization problem bALGD(n, q) has a convex feasible set with a strictly convex

and coercive objective function (see, e.g., [1]). By standard arguments from theory of convex opti-

mization, it follows that an optimal solution exists and is unique. Hence, we can make the following

definition:

Definition 6 (Lifting Map). Given a critically scaled system, we define the lifting map ∆: RF
+×

R
E
+ → R

F
+×R

E
+ to be the function that maps a state (n, q) to the unique solution of the optimization

problem bALGD(n, q).
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The main result of this section is to characterize the invariant states of fluid model as the fixed

points of lifting map ∆.

Theorem 10. A state (n, q) ∈ R
F
+ × R

E
+ is an invariant state of a fluid model solution under the

MWUM-α policy if and only if it is a fixed point of ∆, i.e.,

(n, q) = ∆(n, q).

Proof. The proof follows by establishing equivalence of the following statements, for every state

(n, q):

(i) (n, q) = ∆(n, q).

(ii) Any fluid model solution satisfying the initial condition
(
n(0), q(0)

)
= (n, q) has

(
n(t), q(t)

)
=

(n, q) for all t.

(iii) There exists a fluid model solution with
(
n(t), q(t)

)
= (n, q) for all t.

(iv) (n, q) satisfy

(Γρ)⊤qα = max
π∈S

π⊤(I −R)qα, (46)

ρfqι(f) = nf , ∀ f ∈ F . (47)

(i) ⇒ (ii): If (n, q) = ∆(n, q), then it solves bALGD(n, q). Consider a fluid model solution with an

initial state
(
n(0), q(0)

)
= (n, q). By Lemma 3, it follows that, for all t, Lα

(
n(t), q(t)

)
≤ Lα(n, q).

From the fluid model equations (F1)–(F12),
(
n(t), q(t)

)
is ALGP(n, q) feasible, for all t. Therefore,

it follows that
(
n(t), q(t)

)
is an optimal solution of ALGP(n, q), and, by Lemma 9, of bALGD(n, q).

Since bALGD(n, q) has (n, q) as its unique solution, it follows that
(
n(t), q(t)

)
= (n, q), for all t.

(ii) ⇒ (iii): This follows in a straightforward manner by considering the arguments in Theorem 1

with initial conditions given by (n, q).

(iii) ⇒ (iv): Consider a fluid model solution that satisfies
(
n(t), q(t)

)
= (n, q), for all t. Then,

for any regular point t, we have ṅ(t) = 0 and q̇(t) = 0. Using (F2)–(F4), it follows that x(t) ,

˙̄x(t) = ρ. For any f ∈ F , if nf = nf (t) > 0 and xf (t) = ρf < C, then by (F9) it must be that

xf (t) = nf (t)/qι(f)(t). Therefore, ρfqι(f) = nf . Similarly, if nf = 0, it must be that qι(f) = 0 by

(F11).

Now, define H(t) , 1⊤q1+α(t). Since q(·) is constant, applying (F5), (F6), (F12), it must be that

for every regular t,

0 = Ḣ(t) = q̇(t)⊤qα(t) =
[

Γρ−
(

I −R⊤
)

Πṡ(t)
]⊤

qα(t).

Applying (F7) and (F10),

0 = (Γρ)⊤qα −max
π∈S

π⊤(I −R)qα.

(iv) ⇒ (i): Suppose (n, q) satisfy (46)–(47). Define (n′, q′) , ∆(n, q). Since (n′, q′) solves the

optimization problem bALGD(n, q), by Lemma 9, there exists (t, x, σ) so that (n′, q′, t, x, σ) is an

optimal solution for ALGP(n, q). This solution must satisfy

n′ = n+ t
[
ν − diag(µ)x

]
, q′ = q + t

[

Γx−
(

I −R⊤
)

σ
]

.
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Now consider the trajectory

(
n(τ), q(τ)

)
, (n, q) +

τ

t
(n′ − n, q′ − q), ∀ τ ∈ [0, t].

Define J to be the Lyapunov function Lα evaluated along this path, i.e., J(τ) , Lα

(
n(τ), q(τ)

)
.

Then,

J̇(0)

1 + α
=
∑

f∈F

nα
f (νf − µfxf )

µfρ
α
f

+ (Γx)⊤qα − σ⊤(I −R)qα

=

(
∑

f∈F

nα
f (νf − µfxf )

µfρ
α
f

+ (Γδ)⊤qα

)

︸ ︷︷ ︸

X

+

(

(Γρ)⊤qα − σ⊤(I −R)qα

)

︸ ︷︷ ︸

Y

,

where δ , x− ρ.

First, consider Y . Since σ ∈ Λ, there exists some s ∈ R
S
+ with 1⊤s ≤ 1 and σ ≤ Πs. From the

monotonicity of S, we can pick s so that σ = Πs. Therefore,

σ⊤(I −R)qα = s⊤Π⊤(I −R)qα ≤ max
π∈S

π⊤(I −R)qα.

Then, by (46), it follows that Y ≥ 0. Now, consider X, and note that X = 0 by (47) along with

the fact that

X =
∑

f∈F

(

nα
f (ρf − xf )

ραf
+ δfq

α
ι(f)

)

=
∑

f∈F

δf

(

qαι(f) −
nα
f

ραf

)

. (48)

Thus, we have that J̇(0) ≥ 0. Since J(τ) is a convex function, this implies that J(0) ≤ J(t),

i.e., Lα(n, q) ≤ Lα(n
′, q′). Due to uniqueness of the optimal solution to bALGD(n, q), it follows that

(n′, q′) = (n, q). �

8.3. Fixed Points: Attractiveness

We will now establish the attractiveness of the space of fixed points. Specifically, we will show that

starting from any initial state, the fluid trajectory converges (arbitrarily close to) space of fixed

points, in finite time.

Given ε > 0, define

Jε ,
{
(n, q) ∈ R

F
+ × R

E
+ : ‖(n, q) −∆(n, q)‖1 < ε

}
.

In other words, Jε is the set of states (n, q) which are ε-approximate fixed points (in an ℓ1-norm

sense) of the lifting map. Given a fluid trajectory
(
n(·), q(·)

)
, define

hε
(
n(·), q(·)

)
, inf

{
t ≥ 0 :

(
n(s), q(s)

)
∈ Jε, ∀ s ≥ t

}
.

In other words, hε
(
n(·), q(·)

)
is the amount of time required for the trajectory

(
n(·), q(·)

)
to reach

and subsequently remain in the set Jε.
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Theorem 11. For any ε > 0, there exists Hε > 0 so that if
(
n(·), q(·)

)
is a fluid trajectory of the

MWUM-α policy in a critically loaded system, with initial condition satisfying ‖(n(0), q(0))‖∞ ≤ 1,

then

hε
(
n(·), q(·)

)
≤ Hε.

In order to prove Theorem 11, we require the following technical lemma:

Lemma 12. Under the MWUM-α policy, the lifting map ∆ is continuous. Further, ∆ is also

positively homogeneous, i.e., for all (n, q) ∈ R
F
+ × R

E
+ and κ > 0,

∆(κn, κq) = κ∆(n, q).

Proof. To establish continuity, it suffices to prove that is (nk, qk) → (n, q), then ∆(nk, qk) →

∆(n, q). By definition of ∆, we have that Lα

(
∆(n, q)

)
≤ Lα(n, q). Therefore, since the convergent

sequence {(nk, qk)} lies in a compact set, the sequence {∆(nk, qk)} is contained in a compact set

also. Define xk , ∆(nk, qk) and x , ∆(n, q). Then, there exists a convergence subsequence of {xk}

that converges to some x̂. In what follows, that x̂ = x, and thereby complete the proof of continuity

of ∆.

Suppose that x̂ 6= x. By passing to a subsequence, without loss of generality, assume that

xk → x̂. Since xk is feasible for bALGD(nk, qk), and (nk, qk) → (n, q), it follows that x̂ is feasible for

bALGD(n, q). Since x is the unique optimal solution to bALGD(n, q), we have that Lα(x) < Lα(x̂).

Now, define

εk ,

(

max
ζ∈CR∗(ρ)

wζ(n
k, qk)− wζ(n, q)

wζ(1)

)+

,

where (x)+ , max(0, x). Consider x̃k , x+εk1. By the definition of εk, it follows that x̃k is feasible

for bALGD(nk, qk). Then, Lα(x
k) ≤ Lα(x̃

k). Now, as k → ∞, Lα(x
k) → Lα(x̂). Further, ε

k → 0,

so x̃k → x and Lα(x̃
k) → Lα(x). Then, Lα(x̂) ≤ Lα(x). By contradiction, this establishes the

continuity of ∆.

The positive homogeneity of ∆ follows directly from the definition of the optimization problem

bALGD. �

Proof of Theorem 11. Given δ > 0, define

D ,
{
(n, q) ∈ R

F
+ × R

E
+ : Lα(n, q) ≤ Lα(1)

}
,

I , {(n, q) ∈ D : (n, q) = ∆(n, q)} ,

Iδ ,
{
(n, q) ∈ D : ‖(n, q) − (n′, q′)‖1 < δ, (n′, q′) ∈ I

}
,

Kδ ,
{
(n, q) ∈ D : K(n, q) < K(n′, q′), ∀ (n′, q′) ∈ D \ Iδ

}
.

whereK(n, q) , Lα(n, q)−Lα

(
∆(n, q)

)
. The result can be established by showing that the following

hold:

(i) K
(
n(t), q(t)

)
is non-increasing in t.

(ii) For δ > 0 sufficiently small, I ⊂ Kδ ⊂ Iδ ⊂ Jε.

(iii) Starting from any initial condition in D (this includes all (n, q) with ‖(n, q)‖∞ ≤ 1), the time

to hit Kδ is bounded uniformly.
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In particular, (iii) implies that starting from any state in D, the fluid trajectory hits the set Kδ in

finite time. By (i), once the trajectory is in set Kδ, it remains in that set forever. By (ii), Kδ ⊂ Jε,

and the result follows. To complete the proof, (i), (ii) and (iii) need to be justified.

(i): Since Lα is a Lyapunov function, then Lα

(
n(t), q(t)

)
is non-increasing over time under any

fluid trajectory (cf. Lemma 3). From Lemma 5, the constraints in the optimization problem

bALGD
(
n(t), q(t)

)
can only become more restrictive over time. Therefore, as the time t increases, the

cost of the optimal solution of bALGD
(
n(t), q(t)

)
, i.e., Lα

(
∆(n(t), q(t))

)
, can only be non-decreasing.

Therefore, K
(
n(t), q(t)

)
is non-increasing over time.

(ii): First, consider claim I ⊂ Kδ for any δ > 0. ∆ is continuous by Lemma 12. The constraints,

one for each ζ ∈ CR
∗(ρ), in bALGD(n, q) are continuous with respect to (n, q). And

(
n(t), q(t)

)

continuous with over t. Therefore, both functions Lα

(
n(t), q(t)

)
and K

(
n(t), q(t)

)
are continuous

with respect to t. Now, D is closed and bounded and Iδ is open, hence D\Iδ is closed and bounded.

Therefore, the infimum of the continuous function K is achieved over this set. Since I ⊂ Iδ for any

δ > 0, by the definition of I, this this infimum must be strictly positive. However, over I value of

K is 0. Therefore, it follows that I ⊂ Kδ. The claim that Kδ ⊂ Iδ is trivial since if, (n, q) ∈ D \ Iδ
then K(n, q) is greater than or equal to the infimum over that set, hence (n, q) /∈ Kδ. Finally, to

establish that Iδ ⊂ Jε, recall again that ∆ is continuous and, hence, uniformly continuous over D.

Therefore, for any ε > 0 there exists δ > 0 such that

‖(n, q)− (n′, q′)‖1 < δ ⇒ ‖∆(n, q)−∆(n′, q′)‖1 < ε/2.

Consider any (n, q) ∈ Iδ and (n′, q′) ∈ I with ‖(n, q)− (n′, q′)‖1 < δ. Then,

‖(n, q)−∆(n, q)‖1 ≤ ‖(n, q)− (n′, q′)‖1 + ‖(n′, q′)−∆(n′, q′)‖1 + ‖∆(n′, q′)−∆(n, q)‖1

≤ δ + 0 + ε/2

< ε,

for small enough choice of δ. This completes the proof of (ii).

(iii): Here, we shall use Theorem 10. First observe that, by the definition of K and Lemma 5, for

all 0 ≤ s ≤ t,

K
(
n(s), q(s)

)
−K

(
n(t), q(t)

)
≥ Lα

(
n(s), q(s)

)
− Lα

(
n(t), q(t)

)
.

In other words, the decrease in K is at least as much as decrease in L.

Next, we wish to argue that when the fluid trajectory belongs to the set D \ Kδ (i.e., is away

from the space of fixed points I) then Lα is strictly decreasing at some minimal rate. To be precise,

given (n, q) ∈ D \ Kδ, suppose that
(
n(·), q(·)

)
is a fluid model solution and t a regular point such

that
(
n(t), q(t)

)
= (n, q). We would like to show that

D(n, q) ,
1

1 + α

d

dt
Lα

(
n(t), q(t)

)
≤ −γ, (49)

for some γ > 0.
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To this end, for each f ∈ F , define the function xf : R
F
+ × R

E
+ → [0, C] as

xf (n, q) ,







ρf if nf = 0,

nf (t)/qι(f)(t) if 0 < nf < Cqι(f),

C otherwise.

Examining (F9), it is clear that this function determines the rate allocated to f at time t, i.e.,

xf (t) = xf (n, q). Recalling (16)–(23), we have that

D(n, q) =
∑

f∈F

nα
f

µfρ
α
f

ṅf (t) +
∑

e∈E

qαe q̇e(t)

=
∑

f∈F

nα
f

ραf

(
ρf − xf (n, q)

)
+ [Γx(n, q)]⊤ qα −max

σ∈S
σ⊤(I −R)qα

=
∑

f∈F

(

nα
f

ραf

(
ρf − xf (n, q)

)
+ qαι(f)

(
xf (n, q)− ρf

)

)

+ [Γρ]⊤ qα −max
σ∈S

σ⊤(I −R)qα

=
∑

f∈F

(

nα
f

ραf
− qαι(f)

)

(
ρf − xf (n, q)

)
+ T (q).

(50)

Here, for convenience, we define the function T : RE
+ → R by

T (q) , [Γρ]⊤ qα −max
σ∈S

σ⊤(I −R)qα.

Now, recall that ρf < C for all f ∈ F . Therefore, it follows that, for all f ∈ F , if nf > 0,

xf (n, q) < ρf ⇐⇒ nf/ρf < qι(f)(t).

Therefore, for all f ∈ F , (

nα
f

ραf
− qαι(f)

)

(
ρf − xf (n, q)

)
≤ 0, (51)

with the inequality being strict if nf 6= ρfqι(f) and nf > 0.

Since (n, q) ∈ D \ Kδ, it can not be a fixed point. Therefore, by part (iv) of the equivalence

established in Theorem 10, one of the following two conditions holds:

• T (q) < 0.

• T (q) = 0, and there exists some f ∈ F with nf 6= ρfqι(f) with nf > 0.

Note that the nf > 0 requirement of the second case follows from (F11): nf = 0 would imply that

qι(f) = 0, hence if nf 6= ρfqι(f), it must be that nf 6= 0. In either of the above two cases, using

(51) it is easy to see that the right hand side of (50) is strictly negative. However, this does not

provide a uniform, strictly negative, bound on the drift D. If D were established to be a continuous

function over set D \ Kδ, then such a uniform negative bound would follow as the set D \ Kδ is

closed and bounded. However, closer examination (50) reveals that D depends on the function xf ,

thus is not necessarily continuous at the boundary nf = 0, for any f ∈ F .

This difficulty is overcome as follows. We will cover D \ Kδ by a finite collection of closed and

bounded sets. On each set, we will obtain a bound on the drift D that is continuous on the set
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as well as strictly negative. Hence, we will conclude that D is uniformly bounded by a negative

quantity on D \ Kδ , i.e., that (49) holds. The details are given next.

To begin, define the function R : R+ × R+ → [0, C] by

R
(
nf , qι(f)

)
,

{

nf/qι(f) if nf < Cqι(f),

C otherwise.

For given a vector b = [bf ] ∈ {−1, 0, 1}|F|, define Sb as to be the set of (n, q) ∈ D \ Kδ such that,

for each f ,

ρf −R
(
nf , qι(f)

)
≥ nf , if bf = −1,

∣
∣R
(
nf , qι(f)

)
− ρf

∣
∣ ≤ nf , if bf = 0,

R
(
nf , qι(f)

)
− ρf ≥ nf , if bf = 1.

Clearly Sb is a closed and bounded set, since R is continuous. Given f ∈ F with bf 6= 0, define

the function gf : Sb → R by

gf
(
n, q) ,

{

ραf − (ρf − nf )
α if bf = −1,

(nf + ρf )
α − ραf if bf = 1.

It is easy to check that for all (n, q) ∈ Sb,
∣
∣Rα

(
nf , qι(f)

)
− ραf

∣
∣ ≥ gf (n, q) ≥ 0. (52)

Further, gf is continuous and gf (n, q) = 0 if and only if nf = 0. Finally, define the function

Fb : Sb → R as

Fb(n, q) , T (q) +
∑

f : bf=0

(

nα
f

ραf
− qαι(f)

)

(
ρf − xf (n, q)

)

−
∑

f : bf 6=0

min

(

(C − ρf )(ρ
−α
f − C−α)nα

f ,
n1+α
f gf (n, q)

Cαραf

)

.

We make the following claims:

(a) Fb is a continuous function over Sb.

(b) For any (n, q) ∈ Sb, D(n, q) ≤ Fb(n, q).

(c) For any (n, q) ∈ Sb, Fb(n, q) < 0.

(a): To establish this claim, it is sufficient to observe that for all f with bf = 0, xf is a continuous

function over Sb. To see this, note that if bf = 0, then
∣
∣R
(
nf , qι(f)

)
− ρf

∣
∣ ≤ nf . Now xf (n, q) =

R
(
nf , qι(f)

)
if nf > 0 and xf (n, q) = ρf if nf = 0. Therefore, over Sb, we have that xf (n, q) =

R
(
nf , qι(f)

)
for all nf ≥ 0. This establishes continuity of xf for f with bf = 0.

(b): Here, we need to show that for any f with bf 6= 0, the term in Fb is larger than or equal to

the corresponding term on the right hand side of (50) in magnitude and preserves the sign. That

is, ∣
∣
∣
∣
∣

nα
f

ραf
− qαι(f)

∣
∣
∣
∣
∣

∣
∣ρf − xf (n, q)

∣
∣ ≥ min

(

(C − ρf )(ρ
−α
f −C−α)nα

f ,
n1+α
f gf (n, q)

Cαραf

)

, (53)
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and (

nα
f

ραf
− qαι(f)

)

(
ρf − xf (n, q)

)
= 0 ⇐⇒ nf = 0. (54)

Now, if nf = 0 then xf (n, q) = ρf and hence the left hand side above of (54) is 0. If nf > 0,

since bf 6= 0 and thus
∣
∣R
(
nf , qι(f)

)
− ρf

∣
∣ ≥ nf > 0, we have xf 6= ρf . Therefore, the left hand side

of (54) is not equal to 0. Thus, (54) is established.

To prove (53), we have the following cases:

• nf = 0. Here, both sides of (53) are 0.

• 0 < nf ≤ Cqι(f). Here, we have

∣
∣
∣
∣
∣

nα
f

ραf
− qαι(f)

∣
∣
∣
∣
∣

∣
∣ρf − xf (n, q)

∣
∣ =

qαι(f)

ραf

∣
∣
∣
∣
∣

nα
f

qαι(f)
− ραf

∣
∣
∣
∣
∣

∣
∣ρf − xf (n, q)

∣
∣

=
qαι(f)

ραf

∣
∣Rα

(
nf , qι(f)

)
− ραf

∣
∣
∣
∣ρf −R

(
nf , qι(f)

)∣
∣

≥
nfq

α
ι(f)gf (n, q)

ραf
≥

n1+α
f gf (n, q)

Cαραf
,

where we have used the fact that bf 6= 0 and (52).

• 0 ≤ Cqι(f) < nf . Here, since ρf < C, we have that

∣
∣
∣
∣
∣

nα
f

ραf
− qαι(f)

∣
∣
∣
∣
∣

∣
∣ρf − xf (n, q)

∣
∣ =

(

nα
f

ραf
− qαι(f)

)

(C − ρf ) ≥ (C − ρf )(ρ
−α
f − C−α)nα

f .

(c): Suppose that (n, q) ∈ Sb. We wish to establish that Fb(n, q) < 0. Since (n, q) is not an invariant

point, by part (iv) of the equivalence established in Theorem 10 and by (F11), one of the following

two conditions holds:

• T (q) < 0. In this case, using (51), clearly Fb(n, q) < 0.

• T (q) = 0, and there exists some f ∈ F with nf 6= ρfqι(f) and nf > 0. Here, if bf = 0, then

since the inequality in (51) must be strict, we have Fb(n, q) < 0. On the other hand, suppose

that bf 6= 0. Since nf > 0, we have that

min

(

(C − ρf )(ρ
−α
f − C−α)nα

f ,
n1+α
f gf (n, q)

Cαραf

)

> 0,

and it follows that Fb(n, q) < 0.

Now, given claims (a) and (c), it follows that

sup
(n,q)∈Sb

Fb(n, q) ≤ −γb < 0,

for some γb > 0. Using claim (b), we have that

D(n, q) ≤ −γb < 0,
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for all (n, q) ∈ Sb. Since D \ Kδ = ∪b∈{−1,0,1}FSb, we have that, for all (n, q) ∈ D \ Kδ,

D(n, q) ≤ −γ < 0,

where

γ , min
b∈{−1,0,1}F

γb.

This completes the proof of Theorem 11.

�

8.4. Fixed Points: Optimality

The following theorem characterizes the cost associated with an invariant state, relative to the

effective cost. The effective cost represents the lowest cost achievable under any policy (cf. Theo-

rem 6). Hence, this result implies that the invariant states of the MWUM-α policy are cost optimal,

as α → 0+.

Theorem 13. Suppose (n∗, q∗) is an invariant state of a critically loaded system under the MWUM-

α policy. Then,

c(n∗, q∗) ≤
(
1 + β(α)

)
c∗(n∗, q∗), (55)

where β(α) → 0 as α → 0+.

Proof. Suppose (n∗, q∗) is an invariant state. Define (n′, q′) to be an optimal solution to the effective

cost LP c∗(n∗, q∗), defined by (40). Clearly

Lα(n
∗, q∗) ≤ Lα(n

′, q′),

since (n∗, q∗) is optimal for bALGD(n∗, q∗), and (n′, q′) is feasible for bALGD(n∗, q∗). Then, following

the same argument as in Lemma 7,

c(n∗, q∗) ≤
(
1 + β(α)

)
c(n′, q′) =

(
1 + β(α)

)
c∗(n∗, q∗),

where β(α) → 0 as α → 0+. �

9. Discussion and Future Work

We have provided a model of a communications network that operates at the packet-level with the

goal of achieving end-to-end performance at the flow-level. The proposed MWUM-α control policy

achieves this goal by means of the maximum weight-α packet-level scheduling along with the α-fair

rate allocation. We established the positive recurrence of the system by means of fluid model when

the system is underloaded. For the critically loaded fluid model, we established path-wise constant

factor optimality; the constant factor depends α and the balance factor.

There are several interesting directions for future work. To start with, by characterizing the

invariant manifold of the critically loaded fluid model and establishing its attractiveness, the work

here should lead to the multiplicative state-space collapse property in a relatively straightforward

manner following the method of Bramson [4]. As the next step, establishing the strong state-

space collapse property would require bounding the the maximal deviation in the system state
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over certain time-horizon. We strongly believe that under MWUM-α control policy for α ≥ 1, this

should follow from a recently developed Lyapunov function based maximal inequality by Shah,

Tsitsiklis and Zhong [23]. However, further obtaining a complete characterization of the diffusion

(heavy traffic) approximation seems to be far more non-trivial question. Finally, the results about

path-wise constant factor optimality of critically loaded fluid model seem to suggest the possibility

of such constant factor optimality of MWUM-α control policy under diffusion approximation.
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Appendix A: Standard Norm Inequalities

The following lemma provides some standard norm inequalities that are used throughout the paper:

Lemma 14. Consider a vector x ∈ R
d.

(i) If 0 < p ≤ q ≤ ∞, then ‖x‖q ≤ ‖x‖p.

(ii) If 1 ≤ p ≤ ∞ and 1/p + 1/q = 1, then

d−1/q‖x‖1 ≤ ‖x‖p.

Appendix B: Justification of the Fluid Model

In this appendix, we will provide a proof for Theorem 1, which establishes fluid model as the formal

functional law of large numbers approximation.

We begin with some technical preliminaries. Fix T > 0. Recall from Section 4.2 that D[0, T ] is

the space of functions from [0, T ] to Z, as defined in (6), that are RCLL. This space is equipped

with the Skorohod metric, defined as

d(x,y) , inf
φ∈Φ

‖φ‖o ∨ ‖x− φ ◦ y‖, for x,y ∈ D[0, T ].

Here, Φ is the set of all non-decreasing functions φ : [0, T ] → [0, T ] with φ(0) = 0 and φ(T ) = T .

The norm ‖ · ‖o over Φ is defined as follows: for φ ∈ Φ,

‖φ‖o , sup
0≤s<t≤T

log

∣
∣
∣
∣

φ(t)− φ(s)

t− s

∣
∣
∣
∣
.

By φ ◦ y refers to the composition y(φ(t)), and for any x ∈ D[0, T ],

‖x‖ , sup
t∈[0,T ]

‖x(t)‖1,

with ‖ · ‖1 being the standard ℓ1-norm over the product space Z.

For any x ∈ D[0, T ] and 0 ≤ s < t ≤ T , define

wx(s, t) , sup
s≤t1,t2≤t

‖x(t1)− x(t2)‖1.

Further, for any δ > 0, define

w′
x(δ) = inf

{ti}∈S(T,δ)
max

i
wx(ti−1, ti),

where S(T, δ) is collection of all δ-sparse decompositions {ti} of [0, T ], i.e., 0 = t0 < t1 < · · · < tℓ =

T with ti − ti−1 ≥ δ for all i ≥ 1.

It can be easily checked (see [2, Chapter 3]) that the D[0, T ] is Polish space under the metric d.

Let BT denote the Borel σ-algebra on D[0, T ] with respect to the topology induced by d. We will be

interested in probability measures over space (D[0, T ],B). We shall utilize the following well-known

characterization of tightness of measures (see [2, Theorem 13.2]):
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Theorem 15. The collection of measures {Pθ : θ ∈ Θ} defined on (D[0, T ],B) is tight if and only

if the following two conditions are satisfied:

(a)

lim
A→∞

lim sup
θ∈Θ

Pθ

(

x ∈ D[0, T ] : ‖x‖ ≥ A
)

= 0.

(b) For each ε > 0,

lim
δ→0

lim sup
θ∈Θ

Pθ

(

x ∈ D[0, T ] : w′
x(δ) ≥ ε

)

= 0.

We state the following well-known ‘concentration’ property of Poisson process that shall later

be useful. It follows from the application of a standard Chernoff bound (see, for example, [9,

Theorem 2.2.3]).

Proposition 16. Consider a Poisson process of rate 1. Let N(t) be the number of events of this

Poisson process in time interval [0, t]. Then, for any δ ∈ [0, t],

P

(

|N(t)− t| ≥ δ
)

≤ 2 exp

(

−
δ2

2t

)

.

B.1. Tightness

The first step in the proof of Theorem 1 is the following lemma, which establishes tightness of the

collection of measures associated with the scaled system processes.

Lemma 17. Under the hypotheses of Theorem 1, for each r ≥ 1, let µ(r) denote the measure of

Z(r)(·) ∈ D[0, T ]. Then, the collection of measures {µ(r) : r ≥ 1} is tight.

Proof. We will establish tightness by verifying conditions (a) and (b) of Theorem 15.

First, consider condition (a). It is sufficient to show that for any δ > 0, there exist K(δ) and r(δ)

such that, for K ≥ K(δ) and r ≥ r(δ),

µ(r)
(

x ∈ D[0, T ] : ‖x‖ ≥ K
)

≤ δ. (56)

To establish this, fix δ > 0. By definition,

‖Z(r)(·)‖ = sup
t∈[0,T ]

(

‖Q(r)(t)‖1 + ‖Z(r)(t)‖1 + ‖N (r)(t)‖1 + ‖S(r)(t)‖1 + ‖X̄(r)(t)‖1

+ ‖A(r)(t)‖1 + ‖D(r)(t)‖1 + ‖A(r)(t)‖1

)

.

We will bound each component of the system process Z(r)(·).

First, observe that for any t ∈ [0, T ], with probability 1,

‖Z(r)(t)‖1 + ‖S(r)(t)‖1 + ‖X̄(r)(t)‖1 ≤ K1T, (57)

where the constant K1 depends on system dimensions |E| and |F| and on the maximum rate

allocation C. This is because at most a unit amount of scheduling can be performed per unit time,

and maximal rate allocated to any flow type is at most C.

Next, consider the term ‖A(r)(t)‖1. For each flow type f ∈ F , A
(r)
f (T ) is a Poisson process with

a time-varying rate that is at most C. Therefore, A
(r)
f (T ) is bounded above by 1/r times the total
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number of events of a Poisson process of rate C in time interval [0, rT ]. This number of events is

distributionally equivalent to number of events of Poisson process of rate 1 in interval [0, rTC].

Therefore, using Proposition 16,

P

(

A
(r)
f (T ) ≥ 2CT

)

≤ 2e−
1
2 rTC . (58)

It follows that for r sufficiently large, for any f ∈ F ,

P

(

A
(r)
f (T ) ≥ 2CT

)

≤
δ

10|F|
. (59)

Then, by the union bound,

P

(

‖A(r)(T )‖1 ≥ 2|F|CT
)

≤
δ

10
. (60)

Next, consider term ‖Q(r)(t)‖1. Note that

sup
t∈[0,T ]

‖Q(r)(t)‖1 ≤ ‖Q(r)(0)‖1 + ‖A(r)(T )‖1. (61)

Now, by hypothesis, we have Q(r)(0) → q(0) with probability 1 as r → ∞. Therefore, the collection

of vectors {Q(r)(0)} is almost surely bounded, and thus there exists a constant K2 so that, for r

sufficiently large,

P

(

‖Q(r)(0)‖1 ≥ K2

)

≤
δ

10
. (62)

It follows that for a large enough constantK3 (dependent onK2, C, T , |E|, |F|), and for r sufficiently

large,

P

(

sup
t∈[0,T ]

‖Q(r)(t)‖1 ≥ K3

)

≤
δ

5
. (63)

Using very similar arguments (employing Proposition 16), it is possible to bound the Poisson

processes ‖D(r)(t)‖1 and ‖A(r)(t)‖1. This, in turn, will a lead to a bound on ‖N (r)(t)‖1, since

∑

t∈[0,T ]

‖N (r)(t)‖1 ≤ ‖N (r)(0)‖1 + ‖A(r)(T )‖1.

Therefore, there exists a constant K4, so that for r sufficiently large,

P

(

sup
t∈[0,T ]

‖D(r)(t)‖1 + ‖A(r)(t)‖1 + ‖N (r)(t)‖1 ≥ K4

)

≤
δ

10
. (64)

From the discussion above, equations (57), (60), (63), (64), and union bound, it follows that for

any δ > 0, there exists constants K(δ) and r(δ) such that for K ≥ K(δ) and r ≥ r(δ), we have that

P

(

‖Z(r)(·)‖ ≥ K
)

≤ δ.

This completes the verification of (56) or equivalently, condition (a) of Theorem 15.

Next, consider condition (b) of Theorem 15. For this, it is sufficient to show that for any ε > 0,

there exist δ(ε) and r(δ(ε)) so that for r ≥ r(δ(ε)),

P
(
w′
Z(r)(δ(ε)) ≥ ε

)
≤ δ(ε),
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with δ(ε) → 0 as ε → 0.

To bound w′
Z(r)(δ), we need to find an appropriate δ-sparse decomposition {t0, t1, . . . , tn} of

[0, T ]. For this, we consider a natural decomposition: ti = iδ, for 0 ≤ i < n, and tn = T , when

n = ⌊T/δ⌋. Then, it follows that δ ≤ ti − ti−1 ≤ 2δ for all 0 < i ≤ n.

We wish to bound ‖Z(r)(s)−Z(r)(t)‖1, for ti−1 ≤ s, t ≤ ti, for any 0 < i ≤ n. To this end, first

note that

‖Z(r)(s)−Z(r)(t)‖1 = ‖Q(r)(t)−Q(r)(s)‖1 + ‖Z(r)(t)− Z(r)(s)‖1 + ‖N (r)(t)−N (r)(s)‖1

+ ‖S(r)(t)− S(r)(s)‖1 + ‖X̄(r)(t)− X̄(r)(s)‖1 + ‖A(r)(t)− A
(r)(s)‖1

+ ‖D(r)(t)−D(r)(s)‖1 + ‖A(r)(t)−A(r)(s)‖1.

(65)

As noted earlier, the terms involving Z(r)(·), S(r)(·) and X̄(r)(·) are collectively upper bounded by

K1|t− s|, with a system dependent constant K1, since they are all Lipschitz continuous. Therefore,

for δ ≤ ε/(10K1), the sum of these terms in (65) is no more than ε/10 with probability 1. Next,

we consider the remaining five terms in (65). As in the justification of condition (a), we will have

similar argument for all these of five terms. We will focus on the term corresponding to Q(r)(·).

From (3), it follows that

‖Q(r)(t)−Q(r)(s)‖1 ≤
∥
∥(I −R⊤)Π

(
S(r)(t)− S(r)(s)

)∥
∥
1
+
∥
∥(I −R⊤)

(
Z(r)(t)− Z(r)(s)

)∥
∥
1

+ ‖A(r)(t)−A(r)(s)‖1.

Now the first two terms are bounded by K5|t − s|, with the constant K5 dependent on |S|, |E|,

and |F|. To see this, note that both S(r)(·) and Z(r)(·) are Lipschitz continuous, and the matrices

(I − R⊤)Π and (I − R⊤) are finite dimensional (with dimension dependent on |S|, |E|, and |F|),

and with each entry bounded by constants. It follows that by choosing δ ≤ ε/(10K5), we have that

∥
∥(I −R⊤)Π

(
S(r)(t)− S(r)(s)

)∥
∥
1
+
∥
∥(I −R⊤)

(
Z(r)(t)− Z(r)(s)

)∥
∥
1
≤

ε

10
,

with probability 1. Now, to bound the contribution of term ‖A(r)(t) − A(r)(s)‖1, we can utilize

arguments used for obtaining (60) with T replaced by |t − s|. Note that here we need to use

‘memory-less’ property of the Poisson process crucially. As a conclusion, we obtain that there

exists a constant K6 so that is δ ≤ ε/(10K6), then for sufficiently large r,

P

(

‖A(r)(t)−A(r)(s)‖1 ≤ ε/10
)

≥ 1−
δ2

10T
. (66)

From the above discussion, it follows that for any interval [ti−1, ti], as long as we choose δ

sufficiently small and r sufficiently large,

P

(

sup
ti−1≤s,t≤ti

‖Q(r)(t)−Q(r)(s)‖1 ≤ ε/5

)

≥ 1−
δ2

10T
. (67)

In a very similar manner (using Proposition 16), we obtain the following: there exists a constant

imsart-generic ver. 2009/08/13 file: flow-level-journal.tex date: March 3, 2010



40 C. C. Moallemi & D. Shah

K7, so that if δ = ε/K7 and r is sufficiently large, for any 0 < i ≤ n,

P

(

sup
ti−1≤s,t≤ti

‖N (r)(t)−N (r)(s)‖1 ≤ ε/10

)

≥ 1−
δ2

10T
, (68)

P

(

sup
ti−1≤s,t≤ti

‖A(r)(t)− A
(r)(s)‖1 ≤ ε/10

)

≥ 1−
δ2

10T
, (69)

P

(

sup
ti−1≤s,t≤ti

‖A(r)(t)−A(r)(s)‖1 ≤ ε/10

)

≥ 1−
δ2

10T
, (70)

P

(

sup
ti−1≤s,t≤ti

‖D(r)(t)−D(r)(s)‖1 ≤ ε/10

)

≥ 1−
δ2

10T
. (71)

From (65)-(71) and the discussion above, it follows that there exists a constant K ′ so that is

ε ≤ K and r is sufficiently large, by a union bound over at most T/δ intervals in the partition, we

obtain that

P

(

max
i

sup
ti−1≤s,t≤ti

‖Z(r)(t)−Z(r)(s)‖1 ≤ ε

)

≥ 1− δ.

The result follows. �

B.2. Proof of Theorem 1

We are now ready to prove Theorem 1.

Given that the collection of measures {µ(r) : r ≥ 1} is tight, for any sequence {rk : k ∈ N} ⊂ R

with rk → ∞ as k → ∞, there exists a further subsequence {rkℓ} and limit point µ(∞) such

that µ(rkℓ) converges weakly to µ(∞) as ℓ → ∞. By restricting to this subsequence, assume that

µ(rk) ⇒ µ(∞). Since these measures are defined on a Polish space, by the Skorohod representation

theorem, there exists a probability space over which we can define, for all k, random variables

Z(rk)(·) and z(·) that are distributed according to µ(rk) and µ(∞), respectively, and where the Z(rk)(·)

almost surely converges to z(·), in the Skorohod metric. We will use this setting to argue that the

limiting random variable z(·) satisfies the appropriate fluid model equations with probability 1.

Subsequently, we will establish that under an arbitrary control policy, µ(∞)
(
FMS(T )

)
= 1, while

under the MWUM-α policy, µ(∞)
(
FMS

α(T )
)
= 1. Since µ(rk) ⇒ µ(∞), from definition of weak

convergence, it follows that, under an arbitrary control policy, lim infk→∞ µ(rk)(FMSε(T )) = 1, and

under the MWUM-α policy, lim infk→∞ µ(rk)(FMS
α
ε (T )) = 1, for any ε > 0. This will imply the

desired result.

To this end, we start by establishing that µ(∞)
(
FMS(T )

)
= 1. That is, we need to show that

equations (F1)-(F8) are satisfied.

(F1), (F2), (F5): We start with (F1). Among the components of Z(rk)(·), Z(rk)(·), S(rk)(·) and

X̄(rk)(·) are Lipschitz continuous by construction over [0, T ]. Since Z(rk)(·) converges almost surely

to z(·) with respect to the Skorohod metric d, it follows that the corresponding components of z(·),

z(·), s(·) and x̄(·), are Lipschitz continuous. Equivalently, this follows by the Arzelà-Ascoli theorem.

Now, to establish Lipschitz continuity of the other components of z we will use the following

result:
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Lemma 18. Given a fixed T > 0, consider a Poisson process P with time-varying rate given by

γ(t), for t ≥ 0. Assume there exists constant K > 0 such that γ(t) ∈ [0,K] for all t ≥ 0 and that

γ(t) depends only on events that happen up to time t. Consider a sequence {θi} ⊂ R+ with θi → ∞

as i → ∞. Define the scaled process

Pi(t) =
1

θi
P(θit),

for t ∈ [0, T ]. Also, define the processes

γi(t) =
1

θi
γ(θit), and γ̄i(t) =

∫ t

0
γi(s) ds,

for t ∈ [0, T ], where we assume γ̄i(·) is well-defined. Assume that Pi(·) converges weakly to P∞(·).

Then, the sample paths (over [0, T ]) of P∞(·) are Lipschitz continuous with probability 1. Further,

assume that γ̄i(·) converges (u.o.c.) to γ̄(·) over [0, T ]. Then, P∞(t) = γ̄(t), for all t ∈ [0, T ].

Proof. This is a well-known property of Poisson processes. We describe the key steps of the proof.

First, using the concentration property of Proposition 16, it can be established that the sample

paths of scaled Poisson process are approximately Lipschitz. Second, using a variation of the Arzelà-

Ascoli theorem (e.g., see [4, Lemma 4.2] or [33, Lemma 6.3]), it can be established that the limit

points of such approximately Lipschitz sample paths are in fact Lipschitz. Finally, note the fact

that number of events under a Poisson process with time-varying rate γ(·) over time interval [0, t] is

distributionally equivalent to number of events under a unit rate Poisson process over time interval

[0,
∫ t
0 γ(s) ds]. As long as γ(·) is uniformly bounded by some constant, say K, the functional strong

law of large numbers for scaled unit rate Poisson process over [0,KT ] can be used to obtain the

final desired claim. An interested reader may find the details to this argument in many places in

literature (e.g., [16, Appendix A]). �

Now consider components A(rk)(·), A(rk)(·), and D(rk)(·). By their construction, these are Poisson

processes with possibly time-varying rates that are always uniformly bounded. These processes

converge (over [0, T ]) to the corresponding components a(·), a(·) and d(·) of z(·). Therefore, by

immediate application of Lemma 18, we obtain that a(·), a(·) and d(·) are Lipschitz continuous.

Finally, the Lipschitz continuity of n(·) and q(·) is established if (F2) and (F5) hold — this

is because all of the other components of z(·) are Lipschitz continuous. To this end, recall that

equations (2) and (3) are satisfied by scaled system Z(rk) for all t ∈ [0, T ] by definition. These

equation are preserved under the almost sure convergence Z(rk)(·) → z(·). Thus, (F2) and (F5) are

satisfied.

(F3), (F4), (F6): These equations follow immediately by applying the later part of Lemma 18 for

Poisson process (possibly time-varying) A(rk)(·), A(rk)(·) and D(rk)(·).

(F7), (F8): Among remaining equations, first note that (F8) follows because Z(rk)(·), S(rk)(·) and

X̄(rk)(·) are non-decreasing and this property is preserved under the almost sure convergence of

Z(rk)(·) to z(·). A similar argument establishes (F7).

Now, consider a system that operates under the MWUM-α control policy. We wish to establish

that µ(∞)
(
FMS

α(T )
)
= 1. This involves further demonstrating that (F9)–(F12) are satisfied.
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(F9): Consider any fixed flow type f ∈ F and any regular point t ∈ (0, T ). Now, if nf (t) = 0, then

it must be that ṅf (t) = 0. This is because of the following argument, utilizing non-negativity of

nf (·): suppose that either ṅf (t) > 0 or ṅf (t) < 0. Then, there exist times t− < t or t+ > t such that

nf (t
−) < 0 or nf (t

+) < 0 — this is a contradiction. Given ṅf (t) = 0, by (F2) we have ȧf (t) = ḋf (t).

By (F3) and (F4), it immediately follows that xf (t) = ˙̄xf (t) = νf/µf .

Now, suppose nf (t) > 0. Recall that N
(rk)
f (·) converges to nf (·) as k → ∞ under the Skorohod

metric. Therefore, it follows that there exists a δ > 0 such that, for k sufficiently large, N
(rk)
f (s) ≥ δ

for all s ∈ [t− δ, t+ δ]. We will consider k to be sufficiently large for this to hold. Since t is a regular

point, x̄f (t) is differentiable. Consider any 0 < ε < δ. Then, using the fact that N
(rk)
f (s) > 0 for

s ∈ [t− δ, t+ δ] and the radial invariance property of rate allocation policy, we obtain

X̄
(rk)
f (t+ ε)− X̄

(rk)
f (t) =

1

rk

∫ rkt+rkε

rkt
Xf (s) ds

=
1

rk

∫ rkt+rkε

rkt



argmax
x∈[0,C]

x1−α
(
N

(rk)
f

)α

1− α
−
(
Q

(rk)
ι(f)

)α
x



 ds.

(72)

Define the function R : (0,∞) × R+ → [0, C] by

R(n, q) , argmax
x∈[0,C]

x1−αnα

1− α
− qαx.

It can be easily checked that

R(n, q) =

{

n/q if n < Cq,

C otherwise.

Therefore, it follows that R is a continuous function. Further, N
(rk)
f (·) and Q

(rk)
ι(f)(·) are continuous

as functions of time. Therefore, treating R
(
N

(rk)
f (·), Q

(rk)
ι(f)(·)

)
as a function of time, it is continuous

and takes values in [0, C]. Over the bounded interval [t, t + ε], it must achieve a minimum and a

maximum, which we will denote by Rmin(k, t, ε) and Rmax(k, t, ε), respectively. From (72), it follows

that

Rmin(k, t, ε) ≤
X̄

(rk)
f (t+ ε)− X̄

(rk)
f (t)

ε
≤ Rmax(k, t, ε). (73)

Now, since
(
X̄(rk)(·), N (rk)(·), Q(rk)(·)) converges to

(
x̄(·), n(·), q(·)

)
as k → ∞, it follows (due to

the appropriate continuity of Rmin, and Rmax) that

Rmin(t, ε) ≤
x̄f (t+ ε)− x̄f (t)

ε
≤ Rmax(t, ε). (74)

Here, Rmin(t, ε) and Rmax(t, ε) correspond to the minima and maxima of R
(
n(·), q(·)

)
over [t, t+ε].

Now, taking ε → 0 in (74), invoking the continuity of
(
n(·), q(·)

)
and subsequently of R, and

recalling that t is a regular point, we obtain

xf (t) = ˙̄xf (t) = argmax
x∈[0,C]

x1−αnα
f (t)

1− α
− qαι(f)(t)x,

when nf (t) > 0.
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(F10): Suppose t ∈ (0, T ) is a regular point and consider a schedule π ∈ S. Assume there exists a

schedule σ ∈ S with

π⊤(I −R)qα(t) < σ⊤(I −R)qα(t). (75)

We wish to establish that ṡπ(t) = 0. Since Q(rk)(·) converges to q(·) as k → ∞ the inequality

(75) is strict. It follows that there exists δ > 0 such that for all k sufficiently large and for all

s ∈ [t− δ, t+ δ],

π⊤(I −R)
(
Q(rk)(s)

)α
< σ⊤(I −R)

(
Q(rk)(s)

)α
.

Then, for unscaled system, the weight of schedule π is strictly less than the weight of schedule σ

throughout the time-interval [rk(t−δ), rk(t+δ)]. Therefore, as per the MWUM-α scheduling policy,

the schedule π is never chosen in this time period. That is, for the scaled system, we have

S(rk)
π (t− δ) = S(rk)

π (t+ δ).

Then, as k → ∞

sπ(t+ δ) − sπ(t− δ) = 0.

Thus, ṡπ(t) = 0.

(F11): Consider a regular point t ∈ (0, T ) with nf (t) = 0, for some f ∈ F . By (F9), we have

xf (t) = ρf . Suppose that qι(f)(t) > 0. For any ε1, ε2 > 0, there must exist δ > 0 so that, if

s ∈ (t− δ, t+ δ),

qι(f)(s) ≥ ε1, and nf (s) ≤ ε2.

Therefore, if k is sufficiently large, we must have

Q
(rk)
ι(f)

(s) ≥ ε1/2, and N
(rk)
f (s) ≤ 2ε2.

Equivalently for the unscaled system,

Qι(f)(rks) ≥ rkε1/2, and Nf (rks) ≤ 2rkε2.

This that, for k sufficiently large and for all s ∈ (t − δ, t + δ), the rate allocation in the unscaled

system must satisfy

Xf (rks) ≤
4ε2
ε1

.

This can be made smaller that ρf/2 by the appropriate choice of ε2, and this contradicts the fact

that xf (t) = ρf . Therefore, it must be that qι(f)(t) = 0.

(F12): This follows in a straightforward manner from the invariant (for the unscaled system) that

Z(τ) = 0 for all τ ∈ Z+.
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