23 research outputs found

    Conversion of Artificial Recurrent Neural Networks to Spiking Neural Networks for Low-power Neuromorphic Hardware

    Full text link
    In recent years the field of neuromorphic low-power systems that consume orders of magnitude less power gained significant momentum. However, their wider use is still hindered by the lack of algorithms that can harness the strengths of such architectures. While neuromorphic adaptations of representation learning algorithms are now emerging, efficient processing of temporal sequences or variable length-inputs remain difficult. Recurrent neural networks (RNN) are widely used in machine learning to solve a variety of sequence learning tasks. In this work we present a train-and-constrain methodology that enables the mapping of machine learned (Elman) RNNs on a substrate of spiking neurons, while being compatible with the capabilities of current and near-future neuromorphic systems. This "train-and-constrain" method consists of first training RNNs using backpropagation through time, then discretizing the weights and finally converting them to spiking RNNs by matching the responses of artificial neurons with those of the spiking neurons. We demonstrate our approach by mapping a natural language processing task (question classification), where we demonstrate the entire mapping process of the recurrent layer of the network on IBM's Neurosynaptic System "TrueNorth", a spike-based digital neuromorphic hardware architecture. TrueNorth imposes specific constraints on connectivity, neural and synaptic parameters. To satisfy these constraints, it was necessary to discretize the synaptic weights and neural activities to 16 levels, and to limit fan-in to 64 inputs. We find that short synaptic delays are sufficient to implement the dynamical (temporal) aspect of the RNN in the question classification task. The hardware-constrained model achieved 74% accuracy in question classification while using less than 0.025% of the cores on one TrueNorth chip, resulting in an estimated power consumption of ~17 uW

    A Convolutional Neural Network for Modelling Sentences

    Full text link
    The ability to accurately represent sentences is central to language understanding. We describe a convolutional architecture dubbed the Dynamic Convolutional Neural Network (DCNN) that we adopt for the semantic modelling of sentences. The network uses Dynamic k-Max Pooling, a global pooling operation over linear sequences. The network handles input sentences of varying length and induces a feature graph over the sentence that is capable of explicitly capturing short and long-range relations. The network does not rely on a parse tree and is easily applicable to any language. We test the DCNN in four experiments: small scale binary and multi-class sentiment prediction, six-way question classification and Twitter sentiment prediction by distant supervision. The network achieves excellent performance in the first three tasks and a greater than 25% error reduction in the last task with respect to the strongest baseline

    A Hybrid Approach Towards Two Stage Bengali Question Classification Utilizing Smart Data Balancing Technique

    Full text link
    Question classification (QC) is the primary step of the Question Answering (QA) system. Question Classification (QC) system classifies the questions in particular classes so that Question Answering (QA) System can provide correct answers for the questions. Our system categorizes the factoid type questions asked in natural language after extracting features of the questions. We present a two stage QC system for Bengali. It utilizes one dimensional convolutional neural network for classifying questions into coarse classes in the first stage. Word2vec representation of existing words of the question corpus have been constructed and used for assisting 1D CNN. A smart data balancing technique has been employed for giving data hungry convolutional neural network the advantage of a greater number of effective samples to learn from. For each coarse class, a separate Stochastic Gradient Descent (SGD) based classifier has been used in order to differentiate among the finer classes within that coarse class. TF-IDF representation of each word has been used as feature for the SGD classifiers implemented as part of second stage classification. Experiments show the effectiveness of our proposed method for Bengali question classification

    Distributional Inclusion Vector Embedding for Unsupervised Hypernymy Detection

    Full text link
    Modeling hypernymy, such as poodle is-a dog, is an important generalization aid to many NLP tasks, such as entailment, coreference, relation extraction, and question answering. Supervised learning from labeled hypernym sources, such as WordNet, limits the coverage of these models, which can be addressed by learning hypernyms from unlabeled text. Existing unsupervised methods either do not scale to large vocabularies or yield unacceptably poor accuracy. This paper introduces distributional inclusion vector embedding (DIVE), a simple-to-implement unsupervised method of hypernym discovery via per-word non-negative vector embeddings which preserve the inclusion property of word contexts in a low-dimensional and interpretable space. In experimental evaluations more comprehensive than any previous literature of which we are aware-evaluating on 11 datasets using multiple existing as well as newly proposed scoring functions-we find that our method provides up to double the precision of previous unsupervised embeddings, and the highest average performance, using a much more compact word representation, and yielding many new state-of-the-art results.Comment: NAACL 201

    High Accuracy Rule-based Question Classification using Question Syntax and Semantics

    Get PDF
    corecore