3 research outputs found

    Querying the Unary Negation Fragment with Regular Path Expressions

    Get PDF
    The unary negation fragment of first-order logic (UNFO) has recently been proposed as a generalization of modal logic that shares many of its good computational and model-theoretic properties. It is attractive from the perspective of database theory because it can express conjunctive queries (CQs) and ontologies formulated in many description logics (DLs). Both are relevant for ontology-mediated querying and, in fact, CQ evaluation under UNFO ontologies (and thus also under DL ontologies) can be `expressed\u27 in UNFO as a satisfiability problem. In this paper, we consider the natural extension of UNFO with regular expressions on binary relations. The resulting logic UNFOreg can express (unions of) conjunctive two-way regular path queries (C2RPQs) and ontologies formulated in DLs that include transitive roles and regular expressions on roles. Our main results are that evaluating C2RPQs under UNFOreg ontologies is decidable, 2ExpTime-complete in combined complexity, and coNP-complete in data complexity, and that satisfiability in UNFOreg is 2ExpTime-complete, thus not harder than in UNFO

    Answering regular path queries mediated by unrestricted SQ ontologies

    Get PDF
    A prime application of description logics is ontology-mediated query answering, with the query language often reaching far beyond instance queries. Here, we investigate this task for positive existential two-way regular path queries and ontologies formulated in the expressive description logic , where denotes the extension of the basic description logic with transitive roles () and qualified number restrictions () which can be unrestrictedly applied to both non-transitive and transitive roles (). Notably, the latter is usually forbidden in expressive description logics. As the main contribution, we show decidability of ontology-mediated query answering in that setting and establish tight complexity bounds, namely 2ExpTime-completeness in combined complexity and coNP-completeness in data complexity. Since the lower bounds are inherited from the fragment , we concentrate on providing upper bounds. As main technical tools we establish a tree-like countermodel property and a characterization of when a query is not satisfied in a tree-like interpretation. Together, these results allow us to use an automata-based approach to query answering
    corecore