697 research outputs found

    Active Learning to Classify Macromolecular Structures in situ for Less Supervision in Cryo-Electron Tomography

    Full text link
    Motivation: Cryo-Electron Tomography (cryo-ET) is a 3D bioimaging tool that visualizes the structural and spatial organization of macromolecules at a near-native state in single cells, which has broad applications in life science. However, the systematic structural recognition and recovery of macromolecules captured by cryo-ET are difficult due to high structural complexity and imaging limits. Deep learning based subtomogram classification have played critical roles for such tasks. As supervised approaches, however, their performance relies on sufficient and laborious annotation on a large training dataset. Results: To alleviate this major labeling burden, we proposed a Hybrid Active Learning (HAL) framework for querying subtomograms for labelling from a large unlabeled subtomogram pool. Firstly, HAL adopts uncertainty sampling to select the subtomograms that have the most uncertain predictions. Moreover, to mitigate the sampling bias caused by such strategy, a discriminator is introduced to judge if a certain subtomogram is labeled or unlabeled and subsequently the model queries the subtomogram that have higher probabilities to be unlabeled. Additionally, HAL introduces a subset sampling strategy to improve the diversity of the query set, so that the information overlap is decreased between the queried batches and the algorithmic efficiency is improved. Our experiments on subtomogram classification tasks using both simulated and real data demonstrate that we can achieve comparable testing performance (on average only 3% accuracy drop) by using less than 30% of the labeled subtomograms, which shows a very promising result for subtomogram classification task with limited labeling resources.Comment: Statement on authorship changes: Dr. Eric Xing was an academic advisor of Mr. Haohan Wang. Dr. Xing was not directly involved in this work and has no direct interaction or collaboration with any other authors on this work. Therefore, Dr. Xing is removed from the author list according to his request. Mr. Zhenxi Zhu's affiliation is updated to his current affiliatio

    Highly Efficient Regression for Scalable Person Re-Identification

    Full text link
    Existing person re-identification models are poor for scaling up to large data required in real-world applications due to: (1) Complexity: They employ complex models for optimal performance resulting in high computational cost for training at a large scale; (2) Inadaptability: Once trained, they are unsuitable for incremental update to incorporate any new data available. This work proposes a truly scalable solution to re-id by addressing both problems. Specifically, a Highly Efficient Regression (HER) model is formulated by embedding the Fisher's criterion to a ridge regression model for very fast re-id model learning with scalable memory/storage usage. Importantly, this new HER model supports faster than real-time incremental model updates therefore making real-time active learning feasible in re-id with human-in-the-loop. Extensive experiments show that such a simple and fast model not only outperforms notably the state-of-the-art re-id methods, but also is more scalable to large data with additional benefits to active learning for reducing human labelling effort in re-id deployment
    • …
    corecore