12,298 research outputs found

    Using Visualization to Support Data Mining of Large Existing Databases

    Get PDF
    In this paper. we present ideas how visualization technology can be used to improve the difficult process of querying very large databases. With our VisDB system, we try to provide visual support not only for the query specification process. but also for evaluating query results and. thereafter, refining the query accordingly. The main idea of our system is to represent as many data items as possible by the pixels of the display device. By arranging and coloring the pixels according to the relevance for the query, the user gets a visual impression of the resulting data set and of its relevance for the query. Using an interactive query interface, the user may change the query dynamically and receives immediate feedback by the visual representation of the resulting data set. By using multiple windows for different parts of the query, the user gets visual feedback for each part of the query and, therefore, may easier understand the overall result. To support complex queries, we introduce the notion of approximate joins which allow the user to find data items that only approximately fulfill join conditions. We also present ideas how our technique may be extended to support the interoperation of heterogeneous databases. Finally, we discuss the performance problems that are caused by interfacing to existing database systems and present ideas to solve these problems by using data structures supporting a multidimensional search of the database

    Supporting Data mining of large databases by visual feedback queries

    Get PDF
    In this paper, we describe a query system that provides visual relevance feedback in querying large databases. Our goal is to support the process of data mining by representing as many data items as possible on the display. By arranging and coloring the data items as pixels according to their relevance for the query, the user gets a visual impression of the resulting data set. Using an interactive query interface, the user may change the query dynamically and receives immediate feedback by the visual representation of the resulting data set. Furthermore, by using multiple windows for different parts of a complex query, the user gets visual feedback for each part of the query and, therefore, may easier understand the overall result. Our system allows to represent the largest amount of data that can be visualized on current display technology, provides valuable feedback in querying the database, and allows the user to find results which, otherwise, would remain hidden in the database

    Integration of Biological Sources: Exploring the Case of Protein Homology

    Get PDF
    Data integration is a key issue in the domain of bioin- formatics, which deals with huge amounts of heteroge- neous biological data that grows and changes rapidly. This paper serves as an introduction in the field of bioinformatics and the biological concepts it deals with, and an exploration of the integration problems a bioinformatics scientist faces. We examine ProGMap, an integrated protein homology system used by bioin- formatics scientists at Wageningen University, and several use cases related to protein homology. A key issue we identify is the huge manual effort required to unify source databases into a single resource. Un- certain databases are able to contain several possi- ble worlds, and it has been proposed that they can be used to significantly reduce initial integration efforts. We propose several directions for future work where uncertain databases can be applied to bioinformatics, with the goal of furthering the cause of bioinformatics integration

    Connecting the dots: a multi-pivot approach to data exploration

    No full text
    The purpose of data browsers is to help users identify and query data effectively without being overwhelmed by large complex graphs of data. A proposed solution to identify and query data in graph-based datasets is Pivoting (or set-oriented browsing), a many-to-many graph browsing technique that allows users to navigate the graph by starting from a set of instances followed by navigation through common links. Relying solely on navigation, however, makes it difficult for users to find paths or even see if the element of interest is in the graph when the points of interest may be many vertices apart. Further challenges include finding paths which require combinations of forward and backward links in order to make the necessary connections which further adds to the complexity of pivoting. In order to mitigate the effects of these problems and enhance the strengths of pivoting we present a multi-pivot approach which we embodied in tool called Visor. Visor allows users to explore from multiple points in the graph, helping users connect key points of interest in the graph on the conceptual level, visually occluding the remainder parts of the graph, thus helping create a road-map for navigation. We carried out an user study to demonstrate the viability of our approach

    A community based approach for managing ontology alignments

    Get PDF
    The Semantic Web is rapidly becoming a defacto distributed repository for semantically represented data, thus leveraging on the added on value of the network effect. Various ontology mapping techniques and tools have been devised to facilitate the bridging and integration of distributed data repositories. Nevertheless, ontology mapping can benefitfrom human supervision to increase accuracy of results. The spread of Web 2.0 approaches demonstrate the possibility of using collaborative techniques for reaching consensus. While a number of prototypes for collaborative ontology construction are being developed, collaborative ontology mapping is not yet well investigated. In this paper, we describe a prototype that combines off-the-shelf ontology mapping tools with social software techniques to enable users to collaborate on mapping ontologies
    • …
    corecore