382 research outputs found

    Querying RDF Data Using A Multigraph-based Approach

    Get PDF
    International audienceRDF is a standard for the conceptual description of knowledge , and SPARQL is the query language conceived to query RDF data. The RDF data is cherished and exploited by various domains such as life sciences, Semantic Web, social network, etc. Further, its integration at Web-scale compels RDF management engines to deal with complex queries in terms of both size and structure. In this paper, we propose AMbER (Attributed Multigraph Based Engine for RDF querying), a novel RDF query engine specifically designed to optimize the computation of complex queries. AMbER leverages subgraph matching techniques and extends them to tackle the SPARQL query problem. First of all RDF data is represented as a multigraph, and then novel indexing structures are established to efficiently access the information from the multigraph. Finally a SPARQL query is represented as a multigraph, and the SPARQL querying problem is reduced to the subgraph homomorphism problem. AMbER exploits structural properties of the query multigraph as well as the proposed indexes, in order to tackle the problem of subgraph homomorphism. The performance of AMbER, in comparison with state-of-the-art systems, has been extensively evaluated over several RDF benchmarks. The advantages of employing AMbER for complex SPARQL queries have been experimentally validated

    Storing RDF as a Graph

    Get PDF
    RDF is the first W3C standard for enriching information resources of the Web with detailed meta data. The semantics of RDF data is defined using a RDF schema. The most expressive language for querying RDF is RQL, which enables querying of semantics. In order to support RQL, a RDF storage system has to map the RDF graph model onto its storage structure. Several storage systems for RDF data have been developed, which store the RDF data as triples in a relational database. To evaluate an RQL query on those triple structures, the graph model has to be rebuilt from the triples. In this paper, we presented a new approach to store RDF data as a graph in a object-oriented database. Our approach avoids the costly rebuilding of the graph and efficiently queries the storage structure directly. The advantages of our approach have been shown by performance test on our prototype implementation OO-Store

    Keyword Search on RDF Graphs - A Query Graph Assembly Approach

    Full text link
    Keyword search provides ordinary users an easy-to-use interface for querying RDF data. Given the input keywords, in this paper, we study how to assemble a query graph that is to represent user's query intention accurately and efficiently. Based on the input keywords, we first obtain the elementary query graph building blocks, such as entity/class vertices and predicate edges. Then, we formally define the query graph assembly (QGA) problem. Unfortunately, we prove theoretically that QGA is a NP-complete problem. In order to solve that, we design some heuristic lower bounds and propose a bipartite graph matching-based best-first search algorithm. The algorithm's time complexity is O(k2ll3l)O(k^{2l} \cdot l^{3l}), where ll is the number of the keywords and kk is a tunable parameter, i.e., the maximum number of candidate entity/class vertices and predicate edges allowed to match each keyword. Although QGA is intractable, both ll and kk are small in practice. Furthermore, the algorithm's time complexity does not depend on the RDF graph size, which guarantees the good scalability of our system in large RDF graphs. Experiments on DBpedia and Freebase confirm the superiority of our system on both effectiveness and efficiency

    RDF Querying

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    Building a P2P RDF Store for Edge Devices

    Full text link
    The Semantic Web technologies have been used in the Internet of Things (IoT) to facilitate data interoperability and address data heterogeneity issues. The Resource Description Framework (RDF) model is employed in the integration of IoT data, with RDF engines serving as gateways for semantic integration. However, storing and querying RDF data obtained from distributed sources across a dynamic network of edge devices presents a challenging task. The distributed nature of the edge shares similarities with Peer-to-Peer (P2P) systems. These similarities include attributes like node heterogeneity, limited availability, and resources. The nodes primarily undertake tasks related to data storage and processing. Therefore, the P2P models appear to present an attractive approach for constructing distributed RDF stores. Based on P-Grid, a data indexing mechanism for load balancing and range query processing in P2P systems, this paper proposes a design for storing and sharing RDF data on P2P networks of low-cost edge devices. Our design aims to integrate both P-Grid and an edge-based RDF storage solution, RDF4Led for building an P2P RDF engine. This integration can maintain RDF data access and query processing while scaling with increasing data and network size. We demonstrated the scaling behavior of our implementation on a P2P network, involving up to 16 nodes of Raspberry Pi 4 devices.Comment: Accepted to IoT Conference 202

    Towards Making Distributed RDF processing FLINker

    Get PDF
    In the last decade, the Resource Description Framework (RDF) has become the de-facto standard for publishing semantic data on the Web. This steady adoption has led to a significant increase in the number and volume of available RDF datasets, exceeding the capabilities of traditional RDF stores. This scenario has introduced severe big semantic data challenges when it comes to managing and querying RDF data at Web scale. Despite the existence of various off-the-shelf Big Data platforms, processing RDF in a distributed environment remains a significant challenge. In this position paper, based on an indepth analysis of the state of the art, we propose to manage large RDF datasets in Flink, a well-known scalable distributed Big Data processing framework. Our approach, which we refer to as FLINKer extends the native graph abstraction of Flink, called Gelly, with RDF graph and SPARQL query processing capabilities
    corecore