3,241 research outputs found

    Impliance: A Next Generation Information Management Appliance

    Full text link
    ably successful in building a large market and adapting to the changes of the last three decades, its impact on the broader market of information management is surprisingly limited. If we were to design an information management system from scratch, based upon today's requirements and hardware capabilities, would it look anything like today's database systems?" In this paper, we introduce Impliance, a next-generation information management system consisting of hardware and software components integrated to form an easy-to-administer appliance that can store, retrieve, and analyze all types of structured, semi-structured, and unstructured information. We first summarize the trends that will shape information management for the foreseeable future. Those trends imply three major requirements for Impliance: (1) to be able to store, manage, and uniformly query all data, not just structured records; (2) to be able to scale out as the volume of this data grows; and (3) to be simple and robust in operation. We then describe four key ideas that are uniquely combined in Impliance to address these requirements, namely the ideas of: (a) integrating software and off-the-shelf hardware into a generic information appliance; (b) automatically discovering, organizing, and managing all data - unstructured as well as structured - in a uniform way; (c) achieving scale-out by exploiting simple, massive parallel processing, and (d) virtualizing compute and storage resources to unify, simplify, and streamline the management of Impliance. Impliance is an ambitious, long-term effort to define simpler, more robust, and more scalable information systems for tomorrow's enterprises.Comment: This article is published under a Creative Commons License Agreement (http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute, display, and perform the work, make derivative works and make commercial use of the work, but, you must attribute the work to the author and CIDR 2007. 3rd Biennial Conference on Innovative Data Systems Research (CIDR) January 710, 2007, Asilomar, California, US

    Visualizing and Interacting with Concept Hierarchies

    Full text link
    Concept Hierarchies and Formal Concept Analysis are theoretically well grounded and largely experimented methods. They rely on line diagrams called Galois lattices for visualizing and analysing object-attribute sets. Galois lattices are visually seducing and conceptually rich for experts. However they present important drawbacks due to their concept oriented overall structure: analysing what they show is difficult for non experts, navigation is cumbersome, interaction is poor, and scalability is a deep bottleneck for visual interpretation even for experts. In this paper we introduce semantic probes as a means to overcome many of these problems and extend usability and application possibilities of traditional FCA visualization methods. Semantic probes are visual user centred objects which extract and organize reduced Galois sub-hierarchies. They are simpler, clearer, and they provide a better navigation support through a rich set of interaction possibilities. Since probe driven sub-hierarchies are limited to users focus, scalability is under control and interpretation is facilitated. After some successful experiments, several applications are being developed with the remaining problem of finding a compromise between simplicity and conceptual expressivity

    Using pivots to explore heterogeneous collections: A case study in musicology

    No full text
    In order to provide a better e-research environment for musicologists, the musicSpace project has partnered with musicology’s leading data publishers, aggregated and enriched their data, and developed a richly featured exploratory search interface to access the combined dataset. There have been several significant challenges to developing this service, and intensive collaboration between musicologists (the domain experts) and computer scientists (who developed the enabling technologies) was required. One challenge was the actual aggregation of the data itself, as this was supplied adhering to a wide variety of different schemas and vocabularies. Although the domain experts expended much time and effort in analysing commonalities in the data, as data sources of increasing complexity were added earlier decisions regarding the design of the aggregated schema, particularly decisions made with reference to simpler data sources, were often revisited to take account of unanticipated metadata types. Additionally, in many domains a single source may be considered to be definitive for certain types of information. In musicology, this is essentially the case with the “works lists” of composers’ musical compositions given in Grove Music Online (http://www.oxfordmusiconline.com/public/book/omo_gmo), and so for musicSpace, we have mapped all sources to the works lists from Grove for the purposes of exploration, specifically to exploit the accuracy of its metadata in respect to dates of publication, catalogue numbers, and so on. Therefore, rather than mapping all fields from Grove to a central model, it would be far quicker (in terms of development time) to create a system to “pull-in” data from other sources that are mapped directly to the Grove works lists

    Exploring user and system requirements of linked data visualization through a visual dashboard approach

    Get PDF
    One of the open problems in SemanticWeb research is which tools should be provided to users to explore linked data. This is even more urgent now that massive amount of linked data is being released by governments worldwide. The development of single dedicated visualization applications is increasing, but the problem of exploring unknown linked data to gain a good understanding of what is contained is still open. An effective generic solution must take into account the user’s point of view, their tasks and interaction, as well as the system’s capabilities and the technical constraints the technology imposes. This paper is a first step in understanding the implications of both, user and system by evaluating our dashboard-based approach. Though we observe a high user acceptance of the dashboard approach, our paper also highlights technical challenges arising out of complexities involving current infrastructure that need to be addressed while visualising linked data. In light of the findings, guidelines for the development of linked data visualization (and manipulation) are provided

    Multi-Faceted Search and Navigation of Biological Databases

    Get PDF
    • 

    corecore