18,709 research outputs found

    Constraint-based Query Distribution Framework for an Integrated Global Schema

    Full text link
    Distributed heterogeneous data sources need to be queried uniformly using global schema. Query on global schema is reformulated so that it can be executed on local data sources. Constraints in global schema and mappings are used for source selection, query optimization,and querying partitioned and replicated data sources. The provided system is all XML-based which poses query in XML form, transforms, and integrates local results in an XML document. Contributions include the use of constraints in our existing global schema which help in source selection and query optimization, and a global query distribution framework for querying distributed heterogeneous data sources.Comment: The Proceedings of the 13th INMIC 2009), Dec. 14-15, 2009, Islamabad, Pakistan. Pages 1 - 6 Print ISBN: 978-1-4244-4872-2 INSPEC Accession Number: 11072575 Date of Current Version : 15 January 201

    Relational Approach to Logical Query Optimization of XPath

    Get PDF
    To be able to handle the ever growing volumes of XML documents, effective and efficient data management solutions are needed. Managing XML data in a relational DBMS has great potential. Recently, effective relational storage schemes and index structures have been proposed as well as special-purpose join operators to speed up querying of XML data using XPath/XQuery. In this paper, we address the topic of query plan construction and logical query optimization. The claim of this paper is that standard relational algebra extended with special-purpose join operators suffices for logical query optimization. We focus on the XPath accelerator storage scheme and associated staircase join operators, but the approach can be generalized easily

    SMOQE: A System for Providing Secure Access to XML

    Get PDF
    XML views have been widely used to enforce access control, support data integration, and speed up query answering. In many applications, e.g., XML security enforcement, it is prohibitively expensive to materialize and maintain a large number of views. Therefore, views are necessarily virtual. An immediate question then is how to answer queries on XML virtual views. A common approach is to rewrite a query on the view to an equivalent one on the underlying document, and evaluate the rewritten query. This is the approach used in the Secure MOdular Query Engine (SMOQE). The demo presents SMOQE, the first system to provide efficient support for answering queries over virtual and possibly recursively defined XML views. We demonstrate a set of novel techniques for the specification of views, the rewriting, evaluation and optimization of XML queries. Moreover, we provide insights into the internals of the engine by a set of visual tools. 1

    AMaĻ‡oSā€”Abstract Machine for Xcerpt

    Get PDF
    Web query languages promise convenient and efficient access to Web data such as XML, RDF, or Topic Maps. Xcerpt is one such Web query language with strong emphasis on novel high-level constructs for effective and convenient query authoring, particularly tailored to versatile access to data in different Web formats such as XML or RDF. However, so far it lacks an efficient implementation to supplement the convenient language features. AMaĻ‡oS is an abstract machine implementation for Xcerpt that aims at efficiency and ease of deployment. It strictly separates compilation and execution of queries: Queries are compiled once to abstract machine code that consists in (1) a code segment with instructions for evaluating each rule and (2) a hint segment that provides the abstract machine with optimization hints derived by the query compilation. This article summarizes the motivation and principles behind AMaĻ‡oS and discusses how its current architecture realizes these principles

    Classification of index partitions to boost XML query performance

    Get PDF
    XML query optimization continues to occupy considerable research effort due to the increasing usage of XML data. Despite many innovations over recent years, XML databases struggle to compete with more traditional database systems. Rather than using node indexes, some efforts have begun to focus on creating partitions of nodes within indexes. The motivation is to quickly eliminate large sections of the XML tree based on the partition they occupy. In this research, we present one such partition index that is unlike current approaches in how it determines size and number of these partitions. Furthermore, we provide a process for compacting the index and reducing the number of node access operations in order to optimize XML queries

    Simulation Subsumption or DĆ©jĆ  vu on the Web

    Get PDF
    Simulation unification is a special kind of unification adapted to retrieving semi-structured data on the Web. This article introduces simulation subsumption, or containment, that is, query subsumption under simulation unification. Simulation subsumption is crucial in general for query optimization, in particular for optimizing pattern-based search engines, and for the termination of recursive rule-based web languages such as the XML and RDF query language Xcerpt. This paper first motivates and formalizes simulation subsumption. Then, it establishes decidability of simulation subsumption for advanced query patterns featuring descendant constructs, regular expressions, negative subterms (or subterm exclusions), and multiple variable occurrences. Finally, we show that subsumption between two query terms can be decided in O(n!n) where n is the sum of the sizes of both query terms

    A Method of XML Document Fragmentation for Reducing Time of XML Fragment Stream Query Processing

    Get PDF
    As XML has been established as the standard for data exchange not just on the Web but among heterogeneous devices, systems, and applications, effective processing of XML queries is one of core components of ubiquitous computing. Most of the mobile/hand-held devices deployed in ubiquitous computing environment are still limited in memory and processing power. An effective query processing is required when the source XML document is of large volume. The framework of fragmenting an XML document and streaming the XML fragments for query processing at the mobile devices has received much attention. However, the main focus was on the memory efficiency to cope with the memory constraint in the mobile devices. Query processing time might be compromised in those techniques. Since the processing power is also limited in the mobile devices, the time optimization deserves attention. We have found out that the query processing time is significantly affected by how the source XML document is fragmented. In this paper, we propose a method of XML document fragmentation whereby query processing gets efficient in time while the size constraint for each resulting fragment is satisfied. Through implementation and a set of detailed experiments, we show that our proposed method considerably outperforms other methods
    • ā€¦
    corecore