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Abstract. As XML has been established as the standard for data exchange not just
on the Web but among heterogeneous devices, systems, and applications, effective
processing of XML queries is one of core components of ubiquitous computing. Most
of the mobile/hand-held devices deployed in ubiquitous computing environment are

still limited in memory and processing power. An effective query processing is
required when the source XML document is of large volume. The framework of
fragmenting an XML document and streaming the XML fragments for query pro-
cessing at the mobile devices has received much attention. However, the main focus
was on the memory efficiency to cope with the memory constraint in the mobile
devices. Query processing time might be compromised in those techniques. Since
the processing power is also limited in the mobile devices, the time optimization

deserves attention. We have found out that the query processing time is signifi-
cantly affected by how the source XML document is fragmented. In this paper,
we propose a method of XML document fragmentation whereby query processing
gets efficient in time while the size constraint for each resulting fragment is satis-
fied. Through implementation and a set of detailed experiments, we show that our
proposed method considerably outperforms other methods.

Keywords: XML, XML document fragmentation, XML fragment stream, XML
fragment labeling, XML fragment stream query processing, ubiquitous computing
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1 INTRODUCTION

XML has originally emerged as the standard for data exchange and representation on
the Web but now it is widely adopted as a means of data exchange and representation
among heterogeneous devices, systems, and applications. This, in turn, has resulted
in higher expectation for a technology that can effectively process XML queries in
those resource-constrained mobile devices, because effective XML query processing
should be a core component in ubiquitous computing environment.

In [6, 9], a framework called XStreamCast was proposed whereby XML docu-
ment gets fragmented at the sever and streamed to a number of client mobile devices
through wireless broadcast, then each client receives the XML fragment stream and
processes queries over the stream. In [4, 5, 10, 11, 12, 13], techniques of XML frag-
ment stream query processing were proposed based on the framework of Xstream-
Cast. In [5], a method called XFrag was proposed in which the hole-filler model [6, 9]
is employed to describe the structural relationship among the XML fragments. With
the hole-filler model, each XML fragment could contain holes, which are supposed
to be filled with other XML fragments possibly with other holes. The historical
XML fragment management with the hole-filler model in a dynamic environment
was investigated in [4]. In [11], XFPro, an improved version of XFrag, was proposed.
It was also based on the hole-filler model. In [12, 13], XML fragment labeling(XFL)
which is based on the XML labeling schemes [14, 17] was proposed as a new method
of representing XML fragmentation to replace the hole-filler model in the previous
work. The hole-filler model is popular because of its simplicity in representing XML
fragmentation but has fundamental limitations as investigated in [12, 13] where it
was shown that XFL was much more effective for memory-efficient query processing.
With XFL, it was shown that large and/or dynamic XML fragment stream can also
be dealt with in memory-efficient way and that stream query processing is scalable
with limited memory as the stream size increases [13].

These techniques, however, have focused on memory efficiency. Query perfor-
mance in time has received little attention. So has the XML fragmentation method.
Query processing would take longer as the size of the XML fragment stream gets
larger. This is natural because query processing is not over until the whole stream is
received. Under such an inherent constraint, we note that query processing time is
significantly affected by how the source XML document is fragmented. A method of
fragmenting an XML document into XML fragments is a core component of XML
fragment stream query processing. In fragmenting an XML document, its nodes
are clustered to form XML fragments. For a large XML document, there could be
virtually an infinite number of different fragmentations possible depending on which
part of the XML document is assigned to which fragment.

In this paper, we address the problem of fragmenting an XML document into
XML fragments such that query processing gets efficient in time while memory
efficiency is sustained. We develop a cost model of query processing over XML
fragment stream, and propose a method of fragmenting an XML document. The
novel and important features of our method are:
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• It employs a cost-based fragmentation where the cost model of XML fragment
stream query processing plays a key role.

• It deals with multiple queries that would be in conflict with each other when
it comes to the fragmentation of their common source XML document. One
particular fragmentation could not be effective for all the queries. It tries to
minimize the average query processing time for the entire set of queries running
in all the client devices.

• It takes query frequencies into account such that the derived fragmentation
would be favorable for the hot queries rather than for cold queries. However,
the ad-hoc queries not in the given set of queries are not excluded.

• One of its input parameters is the upper size limit of each XML fragment.
No matter how efficient a fragmentation method is, it is useless and impractical
unless the size of every resulting fragment is less than that of the buffer allocated
for receiving the fragments at the client devices.

The rest of this paper is organized as the follows: Section 2 describes the back-
ground material for this paper. Section 3 proposes a method of XML document
fragmentation given a set of queries and their frequencies. It also describes our cost
model of XML fragment stream query processing. Section 4 describes the imple-
mentation and reports experimental results with our proposed method and other
methods in the literature. Section 5 gives related work. Finally, Section 6 concludes
the paper.

2 BACKGROUND

In this section, we give a brief description of XML fragment stream query processing
as a background of this paper. Part of this section is a revised version of the
excerpt from our earlier paper on memory efficiency of XML fragment stream query
processing [13]. In XML fragment stream query processing, each client processes
the fragment stream, one fragment at a time, rather than receiving and storing the
full stream of XML fragments to reconstruct the original XML document before
processing a query. The fragments could be received in different order than they
were broadcast at the server. The components of XML fragment stream query
processing include tag structure [6, 9], XML fragment labeling [12, 13], and query
pipeline [5].

2.1 Tag Structure

As Figures 1 a) and b) show, XML data can be modeled as a node-labeled tree. The
tag structure is to summarize the structure of the XML tree and also to specify how
it is fragmented. It is specified in XML. Figure 1 c) shows the tag structure of the
XML tree of Figure 1 b). The id attribute is the tag structure ID (tsid) assigned to
each tag that occurs on a path in the XML tree. Their values are uniquely given.
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In Figure 1 c), there are 4 tags specified, ‘a’ through ‘d’, and 10 through 13 are
respectively assigned as their unique tsid ’s. As for the tag ‘b’, there are 2 instances
in the XML tree of Figure 1 b). They are considered the same tag, because both
appears on the same path from the root of the tree (i.e., ‘/a/b’). The same for the
tags ‘c’ and ‘d’. Meanwhile, the name attribute stores the tag name, and the value
of attribute filler being “true” indicates that the corresponding tag is the root of an
XML fragment. Figure 1 d) shows an example of fragmentation for the XML tree
of Figure 1 b). The region marked by a triangle denotes an XML fragment. This
fragmentation conforms to the specification of fragmentation in the tag structure of
Figure 1 c).

<a>
<b>

<c>DOG</c>
<d>CAT</d>

</b>
<b>

<c>CAR</c>
<d>TOY</d>

</b>
</a>

a) XML data

b

c d

CAR TOY

b) tree representation 

c d

DOG

b

CAT

a

a

c

b

d c

b

d

1

1.1 1.2

1.1.1
1.2.1

<fragment FID=“1” tsid=“10”><a/>
</fragment>

<fragment FID=“1.1” tsid=“11”>
<b><c>DOG</c></b>

</fragment>

<fragment FID=“1.2” tsid=“11”>
<b><c>CAR</c></b>

</fragment>

<fragment FID=“1.1.1” tsid=“13”><d>CAT</d>
</fragment>

<fragment FID=“1.2.1” tsid=“13”><d>TOY</d>
</fragment>

d) XML fragment tree with XFL e) XML fragments with XFL

<tag id=“10” name=“a”
filler=“true”>

<tag id=“11” name=“b”
filler=“true”>

<tag id=“12” name=“c”/>
<tag id=“13” name=“d”

filler=“true”/>
</tag>

</tag>

c) tag structure

CAR TOYDOG CAT

Fig. 1. Example of XML fragmentation

2.2 XML Fragmentation with Fragment Labeling

The conventional XML node labeling was devised to represent structural relation-
ship (e.g., parent-child, ancestor-descendant, etc.) among the nodes of XML data
modeled as a tree, and is exploited in the structural joins for XML query process-
ing. In the vertical fragmentation of an XML tree, each of the resulting fragments
is a subtree of the original XML tree. Thus, the relationship among the fragments
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could also be represented as a tree where a node is an XML fragment. We call
it an XML fragment tree, an example of which is shown in Figure 1 d). Thus, its
fragments could be labeled with any of the conventional XML labeling schemes
in the same way as the nodes of the original XML tree are labeled. Figure 1 d)
shows XML fragment labeling (XFL) of the XML fragment tree where Dewey or-
der encoding [18] is employed as an XML labeling scheme. There are 5 fragments
whose labels are 1, 1.1, 1.2, 1.1.1, and 1.2.1. They are given in XML in Figure 1 e).
The top-level element of each fragment, which we call the header element, has two
attributes FID (fragment ID) and tsid. The value of FID is the label assigned
with XFL. In the fragment 1, the original element ‘a’ is enclosed by the header
element, resulting in <fragment FID=“1” tsid=“10”><a/></fragment>. Note
that the original body of element ‘a’ is now null, because the whole of it (<b>
<c>DOG</c><d>CAT</d></b><b><c>CAR</c><d>TOY</d> </b>) is
taken out into its child fragments whose FIDs are 1.1, and 1.2. Meanwhile, in the
fragment 1.1, the original body of the first instance of element ‘b’, <c> DOG </c>
<d> CAT </d>, is replaced by <c> DOG </c> alone without <d> CAT </d>,
which is taken out into the fragment 1.1.1. The same pattern of fragmentation oc-
curs in the fragments 1.2. The structural relationship among the fragments can be
identified due to XML labeling used for the FIDs. For complete description of XML
fragment labeling, refer to [13].

2.3 Query Pipeline

In this paper, we consider XPath expressions for XML queries. Consider an XML
fragment tree in Figure 1 d), the tag structure of which is given in Figure 1 c). For
an XPath expression, it is transformed into a query pipeline where each location
step [8] of the XPath expression is an operator. For example, XPath expression
‘/a/b[c=‘CAR’]/d’ against the XML tree of Figure 1 b) is transformed into a query
pipleline shown in Figure 2 where each box is an operator and the value in paren-
theses beside each operator is the tsid of the tag that corresponds to the operator
as defined in the tag structure.

a b d

=

c ‘CAR’

(10) (11) (13)

(12)

Fig. 2. Query pipeline for ‘/a/b[c=‘CAR’]/d’

For query processing, the tag structure is delivered to the client first. When each
fragment arrives at the client, at least some information on it (if not the fragment
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itself) may need to be kept in the memory of the client for query processing. We
call it fragment information. In principle, to process a query over an XML fragment
stream, some form of bookkeeping of the information on the streamed fragments is
essential because the whole of the source XML document would not be reconstructed
and the fragment itself just streamed in would be discarded soon. For further details
in processing the query ‘/a/b[c=‘CAR’]/d’ (whose result is <d>TOY</d>), refer
to Section 2.3 of [13].

3 XML DOCUMENT FRAGMENTATION

3.1 Overview

In this section, we propose a method of XML document fragmentation whereby
query processing time is reduced. First, we note that there are too many ways
of fragmenting a given XML document. It can grow exponentially to the number
of different path types existing in the document. For example, in the XML tree
of Figure 1 b), there are 4 different path types, ‘/a’, ‘/a/b’, ‘/a/b/c’, ‘/a/b/d’,
and we can come up with 8 different fragmentations when considering only verti-
cal fragmentation. For each path type except the one with the top-level element
(i.e., ‘/a’), its terminal element (e.g., ‘c’ for ‘/a/b/c’) can either be the root of
a fragment that includes itself and all/some of its descendent nodes or belong to
the fragment where its parent node belongs to. Therefore, if there are n differ-
ent path types in a document, 2n−1 vertical fragmentations are possible. For the
XML tree of Figure 1 b), n = 4 and thus, there are 8 different fragmentations. In
reality, n would be very large. For example, there exists 502 different path types
in the auction.xml document of 10.8MB created using xmlgen in XMark bench-
mark [19], and thus, 2501 different fragmentations are possible. It is infeasible to
check the efficiency of every possible fragmentation in order to find the optimal
one for a given set of queries and their frequencies. Thus, we use a heuristic ap-
proach to narrow down the search space. Our heuristic is based on the XPath
step reduction [13] whereby the query pipeline operates efficiently both in time and
space.

Secondly, there should be the upper limit on the size of every XML fragment. It
is given as an input parameter of the method of XML fragmentation, and should be
smaller than the size of the buffer allocated for receiving a fragment at a client. It
can be determined considering the memory capacity of the deployed client devices.
XML fragmentation based solely on query patterns and frequencies would not meet
this requirement.

Given an XML document, its tag structure, a set of XPath queries, their fre-
quencies, and the upper limit of the fragment size, our proposed XML fragmentation
is conducted in the following steps:

1. document analysis,

2. size-constrained fragmentation,
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3. cost and frequency-based fragmentation,

4. physical fragmentation.

In document analysis, several statistics about the XML document are gath-
ered while it is parsed. In size-constrained fragmentation, a preliminary fragmen-
tation is derived such that the size of every fragment is less than the given up-
per limit of the fragment size. In this and the next steps, the XML fragments
themselves are not yet produced. Rather, just the tag structure of the XML docu-
ment is modified so that the fragmentation derived thus far is specified with the
relevant filler attributes set to “true”. The physical fragmentation of the XML
document is done after the final tag structure with the full specification of frag-
mentation is produced. In cost and frequency-based fragmentation, which is the
main step for our fragmentation, the tag structure out of the size-constrained frag-
mentation undergoes a sequence of modifications to take into account the process-
ing cost and frequency of all the client queries. Memory efficiency, that is, the
space cost of XML fragment query processing was thoroughly dealt with in the
previous work [5, 11, 12, 13]. In this paper, we focus on its time cost, the time
it takes for query processing. In this step, both vertical and horizontal fragmen-
tations are considered. The tag structure is modified such that a set of XML
nodes are to be taken out together, forming a separate fragment. To perform
this step, we developed a cost model of XML fragment stream query process-
ing.

Statistic Description Notation in Cost Model
(subsection 3.4.2)

The Number

of Path Instances

The number of instances of P in

the document

I(P )

The Number
of Elements

The number of elements in the
subtree of the tag structure
whose root is the terminal node
of P

E(P )

Total Subtree
Size

The total sum of the byte size
of the subtrees whose root is the
terminal node of P

–

Average Subtree
Size

The average byte size of the sub-
trees whose root is the terminal
node of P

–

Table 1. Statistics for each path type P in the XML document

3.2 XML Document Analysis

While parsing an XML document D, we gather the statistical information for each
path type P appearing in D as listed in Table 1. The set of these path types is equal
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to the set of path types appearing in the tag structure of D. The terminal node of
each path type P could be the root of an XML fragment when vertical fragmentation
is considered. For example, let us consider the XML tree in Figure 1 b). There are
4 different path types: ‘/a’, ‘/a/b’, ‘/a/b/c’, and ‘/a/b/d’. In the fragmentation
of Figure 1 d), the terminal nodes of three path types (‘/a’, ‘/a/b’, and ‘/a/b/d’)
are the root of a fragment. For these path types, there are respectively 1 (‘/a’),
2 (‘/a/b’), and 2 (‘/a/b/d’) instances in Figure 1 b). It means that there are 1, 2,
and 2 fragment instances whose root is at ‘/a’, ‘/a/b’, and ‘/a/b/d’, respectively
(Figure 1 d)). The number of path instances for each path type P , denoted as I(P ),
is necessary in the fragmentation process. Additional information for each path
type P includes the number of elements in the subtree whose root is the terminal
node of P , denoted as E(P ) and the byte size of the subtree whose root is the
terminal node of P .

3.3 Size-Constrained Fragmentation

Size-constrained fragmentation is to ensure that each resulting fragment is smaller
than the given upper limit of the fragment size. Figure 3 shows Algorithm 1 which
conducts this fragmentation. To minimize the relevance checking time incurred
during query processing, which will be described in the next subsection, it tries to
come up with as large a fragment as possible under the fragment size constraint.
Since the tag structure is a tree, invoking Algorithm 1 with its root as input would
traverse it to derive the size-constrained fragmentation. For a node N of the tag
structure, let T (N) denote the subtree whose root is N . Given a node N of the tag
structure, Algorithm 1 terminates if the size of T (N) satisfies the size constraint
(line 2). Otherwise, it recursively calls itself for each child of N (lines 3–6). If the
size constraint is not yet satisfied for T (N) after the recursive calls, it takes out
the subtrees of N as separate fragments one by one from the largest to the smallest
until T (N) meets the size constraint (line 7-13). T (N) shall eventually satisfy the
size constraint, because its size gets reduced as the subtrees of N are taken out as
separate fragments. In a recursive manner, eventually all the fragments shall satisfy
the size constraint.

When T (N) is taken out as a separate fragment, the filler attribute of N in
the tag structure is set to “true” to mark such a fragmentation. Figure 4 describes
Algorithm 2 that performs that (line 17). It is invoked at line 10 of Algorithm 1. It
also updates the statistics maintained for all the affected subtrees in the tag structure
(lines 4–16). When T (N) is taken out from the subtree T containing T (N), the size
of T is reduced by that of T (N). The number of descendants of T is also reduced
by that of T (N). Such deductions are done for every subtree T that contains T (N).
Every node in the path type from the root of the tag structure to the parent of N
is the root of such an affected subtree T .
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Algorithm 1: Size-constrained Fragmentation

1: procedure fragmentBySize(node)

2: if (node.getSubtreeSize() <= fragmentSizeLimit) return;

3: children := node.getChildrenSortedBySize();

4: for each child in children do

5: fragmentBySize(child);

6: endfor

7: if (node.getSubtreeSize() > fragmentSizeLimit) then

8: children := node.getChildrenSortedBySize();

9: for each child in children do

10: markFragUpdateStat(child);

11: if(node.getSubtreeSize() <= fragmentSizeLimit) break;

12: endfor

13: endif

14: endprocedure

Fig. 3. Algorithm for size-constrained fragmentation

Algorithm 2: Mark of Fragmentation and Update of Statistics

1: procedure markFragUpdateStat(node)

2: root := node.getFragmentRoot();

3: if (node == root) root := NULL;

4: if (root != NULL) then

5: numElements := node.getNumElements();

6: byteSize := node.getByteSize();

7: parentOfRoot := root.getParent();

8: p := node.getParent();

9: while(p != parentOfRoot) do

10: pNumElements := p.getNumElements();

11: pByteSize := p.getByteSize();

12: p.setNumElements(pNumElements - numElements);

13: p.setByteSize(pByteSize - byteSize);

14: p := p.getParent();

15: endwhile

16: endif

17: node.setFillerAttribute("true");

18: endprocedure

Fig. 4. Algorithm for marking fragmentation and updating statistics
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3.4 Cost and Frequency-Based Fragmentation

3.4.1 Performance Trade-Off

In fragmenting an XML document, if the size of each fragment increases, the total
number of fragments decreases. If the size gets smaller, there would be more frag-
ments. As an extreme example, if the whole document forms a single fragment, the
size of the fragment would be the document size plus the size of the header element.
In the other extreme, if each element of an XML document forms a fragment on
its own, the size of a fragment would be equal to the size of an XML element plus
the size of the header element, but the number of fragments would be equal to the
number of elements in the document. The number and the size of fragments matter
in query performance as described below.

When a fragment f is received at a client, it is first checked whether f is relevant
to any of the queries running at that client. Relevance checking is done by referring
to the tsid attribute of the header element of f and by consulting the tag structure.
If irrelevant, f is discarded right away. If relevant, f is passed through the relevant
query pipeline operators, which navigate f to extract and store the information
for query processing. The time for fragment stream query processing consists of
the relevance checking time for all the fragments and the navigation time for the
relevant fragments.

Increasing the number of fragments would proportionally increase the relevance
checking time. However, reducing it would increase the average size of relevant
fragments, increasing the navigation time. There exists a performance trade-off
between the relevance checking time and the navigation time. The key variable in
this trade-off is the size of the fragment. To reduce query processing time, (1) the
size of the irrelevant fragments needs to be as large as possible, and (2) the size of
the relevant ones needs to be as small as possible. However, such ideal fragment size
neglects memory efficiency in query processing. A large fragment would occupy more
memory while it is received and processed. We already mentioned that there should
be the upper limit of the fragment size. Thus, even for the irrelevant fragments,
their size is constrained to some extent. As for the size of a relevant fragment,
the minimum size might not be the best, either. Rather, it is better to put the
XML nodes that are inter-related in the query to the same fragment for memory
efficiency [13]. However, such a practice might result in large fragments and/or they
might be too large to meet the upper limit of the fragment size. In all, we need
more objective criteria on the fragment size. That led us to develop a cost model of
XML fragment stream query processing.

3.4.2 Cost Model

We develop a cost model of XML fragment stream query processing based on the
performance trade-off between the relevance checking time and the navigation time.
Our aim is to derive a formula that computes the query processing cost, c(q, F (D)),
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given an XPath query q and a fragmentation F (D) of its source XML document D.
Let n denote the total number of fragments in F (D), and m be the number of
fragments relevant to q as determined by relevance checking. (That is, n − m

fragments are discarded right away after their relevance checking.) Let f1, . . . ,
fn denote all those n fragments, and fr1, . . . , frm denote those m fragments rele-
vant to q where 1 ≤ rj ≤ n and 1 ≤ j ≤ m. c(q, F (D)) can be given in Equa-
tion (1).

c(q, F (D)) =
n∑

i=1

TR(fi) +
m∑

j=1

(TN(frj) + TP (frj)) (1)

where TR(fi) is the relevance checking time for fragment fi, TN(frj) is the navigation
time for fragment frj , and TP (frj) is the time for conducting the remaining tasks of
query processing with the fragment information extracted out of fragment frj (e.g.,
storing the fragment information, evaluating the query predicates if any, checking
parent-child/ancestor-descendant relationship among XML nodes, producing the
query results, etc.).

For each fragment f , its relevance to a query q is checked with the tsid attribute
of the header element of f . With that attribute value, the tag structure, and with
the query pipeline of q, whether or not f is relevant to q can be easily determined.
To expedite this process, the tag structure and the query pipeline could be prepro-
cessed beforehand to derive the data structures that can efficiently support relevance
checking. In that way, TR(f) can be approximated as taking some constant time for
each fragment f .

For each fragment f , its navigation time is dependent on the size of f , which
is, in turn, correlated to the number of XML elements in f . While the relevance
checking of f deals with only 1 element (i.e., the header element of f), the navigation
of f goes through all the elements in f . If we normalize the time cost such that
TR(f) = 1 for each fragment f , TN(f) can be estimated to be equal to the number
of elements in f . Meanwhile, TP (f) would vary from fragment to fragment. We
approximate it as taking some constant time K for each fragment relevant to q. In
all, the normalized approximation of the query processing cost, ĉ(q, F (D)), can now
be given as in Equation (2) from Equation (1)

ĉ(q, F (D)) = n+
m∑

j=1

e(frj) +m×K (2)

where e(frj) denotes the number of elements in fragment frj . For a fragment f ,
e(f) is obtained in the document analysis, because for every path type P in the tag
structure, the number of elements in the subtree whose root is the terminal node
of P is obtained. In Table 1, we denoted it as E(P ) while we denoted the number
of instances of P in the document as I(P ). (Note that I(P ) is also obtained in the
document analysis.) Given a vertical fragmentation F (D) of an XML document D,
let α(F (D)) denote the set of all the path types in the tag structure of D such that
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for each P ∈ α(F (D)), the terminal node of P is the root of some fragments in
F (D). Then, n is given as follows:

n =
∑

P∈α(F (D))

I(P ). (3)

Given an XPath query q and a vertical fragmentation F (D) of its source XML
document D, let β(q, F (D)) denote the set of path types in the tag structure of D
such that for each P ∈ β(q, F (D)), the terminal node of P is the root of some
fragments in F (D) which are relevant to q. (That is, β(q, F (D)) ⊆ α(F (D)) for
every query q.) Then, m is given as follows:

m =
∑

P∈β(q,F (D))

I(P ). (4)

The second term of Equation (2) is computed as follows:

m∑

j=1

e(frj) =
∑

P∈β(q,F (D))

(E(P )× I(P )). (5)

Thus, given an XPath query q and a fragmentation F (D) of its source XML
document D, the approximate normalized cost of processing q over the XML frag-
ment stream out of F (D) is finally given in Equation (6).

ĉ(q, F (D)) =
∑

P∈α(F (D))

I(P ) +
∑

P∈β(q,F (D))

(E(P )× I(P )) +K ×
∑

P∈β(q,F (D))

I(P ) (6)

So far, we have developed a cost model for a single XPath query with respect
to a fragmentation. Given a set of XPath queries running in all the client devices,
Q = {q1, . . . , qu} withH = {h1, . . . , hu} such that hi is the frequency of qi, i = 1, . . . ,
u, the average cost of processing each query in Q with respect to a fragmentation
F (D) of their source XML document D is given in Equation (7).

Ĉ(Q,H, F (D)) =
u∑

i=1

(hi × ĉ(qi, F (D))) (7)

3.4.3 Fragmentation by XPath Step Reduction

This and next subsections describe the main features of our fragmentation. To
explain this fragmentation, we first explain as background some optimization tech-
niques in fragment stream query processing which capitalize on the tag structure.
An XPath expression is a sequence of the location steps consisting of axis, node test,
and predicate [8]. As described in detail in [13], in XML fragment stream query pro-
cessing, only those steps including predicate (filter step) and the last step (result
step) need to be evaluated (rather than evaluating every step in order). Such an op-
timization is possible due to the tag structure and is called XPath step reduction [13],
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because not every step needs to be evaluated. A filter step is to filter the child and
descendant nodes of the node currently processed that do not satisfy the predicate
at hand. A result step is to deliver the query result. Let us consider an example
XPath query: ‘/a/b[c=‘DOG’]/d/e’. For this query, only the steps ‘/b[c=‘DOG’]’
and ‘/e’ need to be evaluated. Such step reduction does not compromise the cor-
rectness of query processing due to the tag structure and the tsid attribute of the
header element of each fragment. Note that each path type is assigned a unique
tsid. Thus, even if two different path types, ‘/a/b’ and ‘/a/d/b’ for example, ter-
minate with the same tag name (i.e., ‘/b’), their tsid ’s are different. Therefore, in
evaluating a location step of XPath against a fragment f which contains element
‘b’ right under the header element, it is possible to figure out whether f is at path
‘/a/b’ or at path ‘/a/d/b’ with the tsid value of f .

The fragment that contains the XML nodes that are matched by the filter or re-
sult steps of an XPath query is relevant to the query. Those nodes are to be accessed
through navigation of the fragment. To reduce the navigation time, it is desired for
such a node to be right under the header element of a fragment. If such a node N

is not right under the header but possibly deep inside the fragment f that is gene-
rated by the size-constrained fragmentation, the subtree with N as its root (T (N))
is taken out of f to form a separate fragment. Figure 5 shows an example of such
a fragmentation for an XPath query ‘/a/b[c=‘DOG’]/d/e’ where the area marked
by the dotted line represents a fragment. The path types involved in processing the
filter steps are ‘/a/b’ and ‘/a/b/c’. Thus, the ‘b’ and ‘c’ elements are put into the
same fragment with ‘b’ right under the header. If the ‘b’ and ‘c’ elements belong to
different fragments, the query pipeline operator for ‘/a/b’ is supposed to keep the
intermediate processing results for the ‘b’ fragments in memory until the related ‘c’
fragments arrive and are processed by the query pipeline operator for ‘/a/b/c’. To
prevent such a scenario, the elements involved in the filter steps are put to the same
fragment. As for the result step, the similar fragmentation is done such that the
element matching the result step (i.e., ‘e’ in the example) is right under the header
of its own fragment.
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Fig. 5. Fragmentation by XPath step reduction
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The fragmentation by XPath step reduction is basically aiming to reduce the
navigation time. It might result in the increase of relevance checking time, because
it increases the number of fragments compared with the original size-constrained
fragmentation. Besides, given a set of different XPath queries, one particular frag-
mentation by XPath step reduction suitable for some subset of queries may harm
the rest of queries.

Algorithm 3: Fragmentation by XPath Step Reduction

1: procedure fragmentByXSR(node)

2: if (node.isFilterOrResultStep()) then

3: beforeCost := estimateQueryProcessingTime();

4: markFragUpdateStat(node);

5: afterCost := estimateQueryProcessingTime();

6: if(afterCost > beforeCost) undoMarkFragUpdateStat(node);

7: endif

8: children := node.getChildrenSortedBySize();

9: for each child in children do

10: fragmentByXSR(child);

11: endfor

12 : endprocedure

Fig. 6. Algorithm for fragmentation by XPath step reduction

The cost model is employed to make feasible fragmentation decision. Taking
out an XML element as a separate fragment from the fragment where its parents
belong to is done only when such a fragmentation reduces the query processing
cost estimated by Equation (6) for a single query or by Equation (7) for a set of
queries. Algorithm 3 in Figure 6 describes such a fragmentation by XPath step re-
duction. Algorithm 3 takes a node N of the tag structure. Lines 2–7 decide whether
N corresponds to the filter or result step of any of the queries and if so, conduct
fragmentation such that T (N) is taken out as a separate fragment. Line 3 estimates
the cost before fragmentation whereas line 5 estimates the cost after fragmenta-
tion. Line 6 undoes the fragmentation if after-cost is higher than the before-cost.
Lines 8–11 invoke Algorithm 3 recursively for each of the children nodes of N . Since
the tag structure is a tree, invoking Algorithm 3 with its root as input would traverse
it, conducting fragmentation by XPath step reduction.

3.4.4 Horizontal Fragmentation by Sibling Subtree Merge

Thus far, all the fragmentations considered are vertical ones. Employing vertical
fragmentation only, however, has inherent limitation in enhancing query perfor-
mance. Let us consider, for example, the fragmentation of Figure 5 and an XPath
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query q: ‘/a/b[c=‘DOG’]/d/e’. The fragment with ‘b’ right under the header con-
tains the child elements of ‘b’, that is, ‘c’, ‘d’, ‘f’, and ‘g’. Among these children,
the only one which needs to be accessed for the processing of q is ‘c’ due to XPath
step reduction. It is part of the filter steps with a predicate condition. The rest of
the children merely increases the navigation time. To reduce the navigation time,
each of them could be taken out to form its own fragment. Figure 7 a) shows such
a fragmentation. However, such a purely vertical fragmentation would result in the
increase of relevance checking time, because now there exist more fragments.

b

d f

DOG

b

CAT

a

gc

e

d f

CAR

TOY

gc

e

a)

b

d f

DOG

b

CAT

a

gc

e

d f

CAR

TOY

gc

e

b)

Fig. 7. Fragmentation by sibling tree merge

To solve such a problem, the merging of sibling subtrees can be considered.
Such a merge results in horizontal fragmentation. Thus, along with the vertical
fragmentation employed so far, our fragmentation becomes a hybrid one. Figure 7 b)
shows the result of incorporating the sibling subtree merge into the fragmentation
of Figure 7 a). With sibling subtree merge, all the sibling elements not needed for
query processing can be gathered and put to one fragment as long as the fragment
size constraint is not violated. Such a merge would improve query performance if
the benefit of navigation time reduction exceeds the cost of relevance checking time
increase. Given a set of queries and their frequencies, the sibling subtree merge
may not always improve query performance for all the queries, because such cost
and benefit out of the merge considered would not be the same for all the queries.
Therefore, we need to rely on the cost model. Sibling subtree merge is applied
only if the query processing cost estimated by Equation (6) for a single query or by
Equation (7) for a set of queries is reduced with it. In addition, this merge can be
applied only when the fragment size constraint is satisfied.

Figure 8 describes Algorithm 4, which conducts sibling subtree merge. It takes
a node N of the tag structure. Lines 3–9 select the candidate nodes for merge. The
conditions that a candidate should satisfy are checked (line 5), and also the frag-
ment size constraint is checked every time a node becomes a candidate, enlarging
the candidate pool (line 7). Lines 10–15 conduct the merge, taking out the selected
nodes together as a separate fragment and updating the statistics of the resulting
fragmentation. Line 2 estimates the cost before fragmentation whereas line 16 esti-
mates the cost after fragmentation. Line 17 undoes the fragmentation if after-cost is
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Algorithm 4: Fragmentation by Sibling Subtree Merge

1: procedure mergeSiblingSubtrees(node)

2: beforeCost := estimateQueryProcessingTime();

3: children := node.getChildren();

4: for each child in children do

5: if (!child.isFilterOrResultStep()

&& !child.hasChildFragment()

&& !child.isFragmentRoot()) then

6: child.setMergeCandidate("true");

7: if (node.getMergeRoot().getSize() > fragmentSizeLimit)

child.setMergeCandidate("false");

8: endif

9: endfor

10: mergeRoot := node.getMergeRoot();

11: if (mergeRoot == NULL) return; // there is not a

// candidate node for merge

12: mNumElements := mergeRoot.getNumElements();

13: mByteSize := mergeRoot.getByteSize();

14: node.setNumElements(node.getNumElements() - mNumElements);

15: node.setByteSize(node.getByteSize() - mByteSize);

16: afterCost = estimateProcessingTime();

17: if (beforeCost < afterCost) node.undoMerge();

18: end procedure

Fig. 8. Algorithm for fragmentation by sibling subtree merge

higher than the before-cost. Since the tag structure is a tree, invoking Algorithm 4
with its root as input would traverse it, conducting fragmentation by sibling subtree
merge.

4 IMPLEMENTATION AND PERFORMANCE EVALUATION

4.1 Overview

This section describes implementation of the proposed method and compares its
performance with previous methods in the literature through experiments. Since
our proposed method considers the constraint on the fragment size while conduct-
ing the fragmentation based on query processing cost and query frequency, we call
it XML Fragmentation by Size and Query (SQ). It is compared with DTD-based
fragmentation method of [13] (denoted as D, hereafter) and with Path Frequency
Tree method (PFT ) proposed in [10].
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These three schemes were implemented in Java using J2SE Development Kit 5.0
Update 11. Performance evaluation was conducted in a system of Windows XP
platform with Intel Pentium D 2.66GHz CPU and 1.5GB RAM. The auction XML
documents used for performance evaluation were generated by xmlgen program in
the XMark benchmark [19]. The size of the document used in the experiments is
10.8MB (the scaling factor set in running xmlgen was 0.1, and all the white spaces
such as spaces for indentation, tabs, and newlines were removed).

As for the algorithm of processing an XPath query over an XML fragment
stream, the one described in [13] was employed, because it is the most memory-
efficient among those proposed in the literature. Since the order in which each
client receives the XML fragments of the stream could be different from that in
which the server broadcasts them, we considered both the best and the worst case
scenarios. Given an XML fragmentation, it can be represented as an XML fragment
tree where a node is an XML fragment. In the best case scenario, the XML fragments
are received at clients in the order of preorder traversal of the fragment tree. In the
worst case one, they are received level by level of the fragment tree in the bottom-up
order. In Figure 9, both the preorder and the bottom-up order of fragments are
shown for an XML fragment tree.

A

B E F

C D G

Preorder: A-B-C-D-E-F-G

Bottom-up: C-D-G-B-E-F-A

Fig. 9. Orders of fragment streaming

As for the constant K used in Equation (6) in our cost model, it was set to 5 in
the experiments. Such a value was obtained empirically through a number of expe-
riments with the query processing algorithm of [13]. As we mentioned in Section 3,
the size constraint on every fragment can be specified with SQ. The upper limit on
the fragment size with SQ was set to 20 KB. This value was chosen because the
largest size of fragments out of D or PFT was about 20KB. The performance metric
used was the query processing time. Every experiment was repeated 10 times under
the same condition, and the results were averaged.

4.2 Evaluation of XML Fragmentation for a Single Query

This section presents experimental results for query performance with the three
methods of XML fragmentation for a single query. Table 2 shows a list of 20 XPath
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ID XPath Expression

Q1 /site/open auctions/open auction[initial>“10”]//increase

Q2 /site/open auctions/open auction/bidder[increase>“200”]

Q3 /site/open auctions/open auction[initial>“0”]/bidder

Q4 /site/open auctions/open auction[initial>“10”]//start

Q5 /site/open auctions/open auction[initial>“200”]/bidder/time

Q6 /site/open auctions/open auction/bidder[increase>“200”]/time

Q7 /site/open auctions/open auction[initial>“500”]/bidder[increase>“200”]/time

Q8 /site//increase

Q9 /site/people/person[name=“Claudine Nunn”]/watches/watch

Q10 /site/people/person[name=“Torkel Prodrodmidis”]/profile

Q11 /site/people/person/homepage

Q12 /site/closed auctions/closed auction[price>“100”]/type

Q13 /site/closed auctions/closed auction[price>“200”]/annotation/author

Q14 /site/closed auctions/closed auction[price>“40”]/itemref

Q15 /site/closed auctions/closed auction/buyer

Q16 /site/regions/africa/item[location=“United States”]/mailbox/mail/from

Q17 /site/regions/namerica/item[payment=“Creditcard”]

Q18 /site/regions/australia/item/description

Q19 /site/regions//item

Q20 /site//emailaddress

Table 2. XPath queries in experiments

queries used for this experiment. For each query of Q1 through Q20 in Table 2, the
auction XML document was fragmented by SQ, D, and PFT, respectively.

Figure 10 a) compares the query processing time of each query with respect to
three different fragmentations when the order of fragment arrival is the preorder. We
can see that SQ outperforms D and PFT for all the 20 different queries. Figure 10 b)
compares them for the bottom-up order. Even in this worst case scenario, SQ
absolutely outperforms the other two for all the queries. We can also note that SQ
actually performs similarly for both the best and the worst case scenarios while the
performance with D or PFT in the worst case has considerably degraded compared
with their best case counterpart.

ID XPath Expression

Q1 /site/open auctions/open auction[initial>“10”]//increase

Q2 /site/open auctions/open auction[initial>“10”]//start

Q3 /site/open auctions/open auction[initial>“500”]/bidder[increase¿“200”]/time

Q4 /site/people/person[name=“Claudine Nunn”]/watches/watch

Q5 /site/closed auctions/closed auction[price>“100”]/type

Q6 /site/closed auctions/closed auction/buyer

Q7 /site/regions/australia/item/description

Table 3. Query set 1
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Fig. 10. Query processing time with fragmentation for a single query

4.3 Evaluation of XML Fragmentation for Multiple Queries

This section presents experimental results for multiple queries. The 20 XPath queries
in Table 2 were partitioned into 3 sets of queries: query set 1, 2, and 3 as shown
in Tables 3 through 5. Performance evaluation for the case of multiple queries has
been conducted for each query set. For each query set, the auction XML document
was fragmented with SQ, D and PFT, respectively for the multiple queries in the
set assuming that they have the equal frequencies.

The three graphs in the left-hand side of Figure 11 show the query process-
ing time for each query in the query set 1, 2, and 3, respectively when the frag-
ments were broadcast in preorder. SQ outperforms the other two methods for all
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ID XPath Expression

Q1 /site/open auctions/open auction/bidder[increase>“200”]

Q2 /site/open auctions/open auction[initial>“200”]/bidder/time

Q3 /site//increase

Q4 /site/people/person[name=“Torkel Prodrodmidis”]/profile

Q5 /site/closed auctions/closed auction[price>“200”]/annotation/author

Q6 /site/regions/africa/item[location=“United States”]/mailbox/mail/from

Q7 /site/regions//item

Table 4. Query set 2

ID XPath Expression

Q1 /site/open auctions/open auction[initial>“0”]/bidder

Q2 /site/open auctions/open auction/bidder[increase>“200”]/time

Q3 /site/people/person/homepage

Q4 /site/closed auctions/closed auction[price>“40”]/itemref

Q5 /site/regions/namerica/item[payment=“Creditcard”]

Q6 /site//emailaddress

Table 5. Query set 3

the three different query sets. As for PFT, it performs better than D in most
queries but there exist queries (e.g., Q2, Q4, Q5, and Q7 in the query set 1) for
which that is not the case. The reason for that deserves analysis. For the query
set 1, PFT created 51 857 fragments, that is more than 32 289 fragments created
by D. The reason for the worse performance of PFT compared with D for some
queries is because the relevance checking takes longer for the entire stream with
more number of fragments produced by PFT. In comparison, SQ created 13 144
fragments. We note that SQ has created the least number of fragments among
the three methods. SQ takes out the part of the XML document irrelevant to
the queries or infrequently referenced by the queries as large a fragment as pos-
sible under the fragment size constraint. It helps reduce query processing time
by reducing the total relevance checking time for the entire stream of fragments.
SQ also takes out the part of the XML document relevant to the queries or fre-
quently referenced by the queries as small a fragment as possible, reducing the total
navigation time. The superiority of SQ is mostly due to the fact that its frag-
mentation decision is based on the cost model. Only when the query processing
cost estimated with the Equation (7) is reduced with a certain fragmentation, it is
adopted.

The three graphs in the right-hand side of Figure 11 show the query processing
time for each query in the query set 1, 2, and 3, respectively when fragments were
broadcast bottom-up. SQ outperforms the other two even in this worst case scenario.
While query processing times with D and PFT for the bottom-up order significantly
increased compared with those for the preorder, little performance degradation was
observed for the case with SQ. Table 6 summarizes the average performance im-
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Fig. 11. Query processing time with fragmentation for multiple queries

provement of SQ compared with D and PFT for the three query sets and for the
two orders of fragment streaming.

5 RELATED WORK

The previous work on XML fragment stream query processing [4, 5, 10, 11, 12, 13]
as outlined in Section 1 has paid little attention to the method of efficient XML
fragmentation with rare exceptions [10, 13], because the main problem dealt with
in those work was memory efficiency in query processing. In [13], a DTD-based
fragmentation was devised. It is assumed that the source XML document to be
fragmented conforms to a DTD (Document Type Definition), and the characteristic
that when an XML document is represented as a tree, typically the width is wide
while depth is shallow [16], was considered. This method fragments an XML docu-
ment such that each of the repeating element (marked with ‘*’ or ‘+’ in the DTD)
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Unit [%]

Method
D PFT

Query Set

Query Set 1 (preorder) 44 42

Query Set 2 (preorder) 46 28

Query Set 3 (preorder) 53 31

Query Set 1 (bottom-up) 56 54

Query Set 2 (bottom-up) 48 37

Query Set 3 (bottom-up) 59 41

Table 6. Performance improvement with SQ over D and PFT

instances separately forms a fragment. Such a straightforward vertical fragmenta-
tion does not consider the effect of fragmentation on the time it takes for XML
fragment stream query processing. In [10], such an effect is considered when the
fragmentation is designed with the schema information based on the query frequen-
cies. Two methods of XML fragmentation, called Path Frequency Tree (PFT) and
Markov tables (MP), were proposed. Both methods work under the same heuristic,
taking into account the query frequencies on the elements of the XML document.
They merge the XML elements with low frequency in the same fragment to enhance
fragment utilization, and merge those with high frequency in the same fragment to
enhance fragment cohesion. They require the threshold values for the high and low
frequencies be given for fragmentation. Since PFT performs better than MP accord-
ing to the experiments in [10], we have employed PFT as well as the DTD-based
method of [13] for comparison with our proposed method as described in the previ-
ous section. The fundamental limitations of PFT and DTD-based method are that
first, they did not consider the performance trade-off between relevance checking
time and navigation time in XML fragment stream query processing, and second,
they cannot impose the upper limit on the fragment size.

In [20], a method of fragmenting an XML document for efficient transmission
over the network was investigated. In this method, an XML document modeled
as a tree is partitioned into fragments called XDU (Xstream Data Unit), each of
which is a transmission unit smaller than the maximum amount of data that can be
transferred over the network. At the receiving end, the received XDUs are merged
to reconstruct the original XML document. This fragmentation method is different
from our XML fragmentation, because the emphasis is put to the efficiency of re-
construction at the receiving end. In our work, the XML fragments are not merged
for reconstruction of the source XML document.

The methods of XML document fragmentation were investigated in distributed
and/or parallel XML query processing environments [7, 15, 2, 3]. In [7], design
and query models for distributed XML repository were presented. Considering that
XML data is usually distributed on the Web, techniques of fragmenting virtual XML
repository and allocating them in appropriate locations for the expected tasks were
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proposed to build an effective XML distributed processing environment. In [15],
adaptation of the well-known methods of relational database fragmentation, hori-
zontal and vertical, to XML data was formally dealt with. In [2], a framework
called PartiX was proposed where the vertical, horizontal, and hybrid fragmenta-
tion of XML data is employed for distribution of XML data and parallel processing
of an XML query against the distributed data. In PartiX, the fragmentation of not
just a single XML document but a set of XML documents was considered. In [3],
the problem of producing large intermediate results during XML query processing
in a distributed computing environment was tackled by devising a method of XML
document fragmentation that takes into account the structural characteristics of
the document (e.g., document size, the depth and width of the subtrees when the
document is represented as a tree). It contrasts to the conventional semantic-based
fragmentation (e.g., predicate-based horizontal fragmentation). There are also other
methods of XML fragmentation proposed for active XML suitable for Web services
and P2P applications [1]. However, all these works cannot be applied to query
processing over XML fragment stream. Basically, they are for different framework
of query processing and their goal is to improve efficiency through data distribu-
tion and through distributed and parallel processing of XML data in a distributed
environment.

6 CONCLUSIONS

One of distinct aspects in modern computing is that resource-limited devices or sys-
tems often play a key role. In such an environment, data stream processing with
efficient resource management is getting more important and becomes a core tech-
nique. Such a challenge is widely encountered in ubiquitous computing as dealt
with in this paper and even in grid computing [21]. In this paper, we addressed the
problem of XML document fragmentation for query processing over XML fragment
stream in mobile and hand-held devices widely deployed in ubiquitous computing en-
vironment. Since the memory capacity of those mobile devices is yet limited, a large
volume of XML document is fragmented and the fragments are streamed for query
processing. The time it takes for such stream query processing significantly depends
on how the source XML document is fragmented. We proposed a method of XML
document fragmentation whereby the stream query processing time gets reduced
while the constraint of the upper limit of the fragment size is satisfied. Effectiveness
of our proposed method was verified through implementation and a detailed set of
experiments. The mean reduction in query processing time with our method com-
pared with the previous ones measured in single query experiments was about 56%,
and that in multiple query experiments was about 45%.

The contribution of this paper is that a foundation of time optimization of XML
fragment stream query processing has been suggested. Compared with the issue
of memory efficiency, time efficiency in XML fragment stream query processing
has received little attention. We have observed the performance trade-off between
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the relevance checking time and the navigation time for each of the fragments, and
developed a cost model of XML fragment stream query processing, which plays a key
role in making decisions on the fragmentation based on the XPath step reduction
and subtree merge.

In this paper, we have focused on the time cost of XML fragment stream query
processing, developing a cost model. In [13], its space cost (i.e., memory require-
ment) was investigated, but without a cost formula. In general, time optimization
often sacrifices space efficiency. However, we firmly believe that such a trade-off
would not exist with our proposed method, because the upper limit of the fragment
size is enforced and memory efficiency is also taken care of in the fragmentation
based on the XPath step reduction. The latter technique is devised for time effi-
ciency in this paper but it is also expected to benefit space efficiency. As a future
work, we plan to investigate if memory-conscious XML fragmentation other than
the fragmentation based on the XPath step reduction is possible, and how it could
be integrated with the time-conscious fragmentation proposed in this paper.
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