11,493 research outputs found

    Spatial information retrieval and geographical ontologies: an overview of the SPIRIT project

    Get PDF
    A large proportion of the resources available on the world-wide web refer to information that may be regarded as geographically located. Thus most activities and enterprises take place in one or more places on the Earth's surface and there is a wealth of survey data, images, maps and reports that relate to specific places or regions. Despite the prevalence of geographical context, existing web search facilities are poorly adapted to help people find information that relates to a particular location. When the name of a place is typed into a typical search engine, web pages that include that name in their text will be retrieved, but it is likely that many resources that are also associated with the place may not be retrieved. Thus resources relating to places that are inside the specified place may not be found, nor may be places that are nearby or that are equivalent but referred to by another name. Specification of geographical context frequently requires the use of spatial relationships concerning distance or containment for example, yet such terminology cannot be understood by existing search engines. Here we provide a brief survey of existing facilities for geographical information retrieval on the web, before describing a set of tools and techniques that are being developed in the project SPIRIT : Spatially-Aware Information Retrieval on the Internet (funded by European Commission Framework V Project IST-2001-35047)

    Aggregated Deep Local Features for Remote Sensing Image Retrieval

    Get PDF
    Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.Comment: Published in Remote Sensing. The first two authors have equal contributio

    Thesaurus-assisted search term selection and query expansion: a review of user-centred studies

    Get PDF
    This paper provides a review of the literature related to the application of domain-specific thesauri in the search and retrieval process. Focusing on studies which adopt a user-centred approach, the review presents a survey of the methodologies and results from empirical studies undertaken on the use of thesauri as sources of term selection for query formulation and expansion during the search process. It summaries the ways in which domain-specific thesauri from different disciplines have been used by various types of users and how these tools aid users in the selection of search terms. The review consists of two main sections covering, firstly studies on thesaurus-aided search term selection and secondly those dealing with query expansion using thesauri. Both sections are illustrated with case studies that have adopted a user-centred approach

    Stochastic Attraction-Repulsion Embedding for Large Scale Image Localization

    Full text link
    This paper tackles the problem of large-scale image-based localization (IBL) where the spatial location of a query image is determined by finding out the most similar reference images in a large database. For solving this problem, a critical task is to learn discriminative image representation that captures informative information relevant for localization. We propose a novel representation learning method having higher location-discriminating power. It provides the following contributions: 1) we represent a place (location) as a set of exemplar images depicting the same landmarks and aim to maximize similarities among intra-place images while minimizing similarities among inter-place images; 2) we model a similarity measure as a probability distribution on L_2-metric distances between intra-place and inter-place image representations; 3) we propose a new Stochastic Attraction and Repulsion Embedding (SARE) loss function minimizing the KL divergence between the learned and the actual probability distributions; 4) we give theoretical comparisons between SARE, triplet ranking and contrastive losses. It provides insights into why SARE is better by analyzing gradients. Our SARE loss is easy to implement and pluggable to any CNN. Experiments show that our proposed method improves the localization performance on standard benchmarks by a large margin. Demonstrating the broad applicability of our method, we obtained the third place out of 209 teams in the 2018 Google Landmark Retrieval Challenge. Our code and model are available at https://github.com/Liumouliu/deepIBL.Comment: ICC

    Spatio-textual indexing for geographical search on the web

    Get PDF
    Many web documents refer to specific geographic localities and many people include geographic context in queries to web search engines. Standard web search engines treat the geographical terms in the same way as other terms. This can result in failure to find relevant documents that refer to the place of interest using alternative related names, such as those of included or nearby places. This can be overcome by associating text indexing with spatial indexing methods that exploit geo-tagging procedures to categorise documents with respect to geographic space. We describe three methods for spatio-textual indexing based on multiple spatially indexed text indexes, attaching spatial indexes to the document occurrences of a text index, and merging text index access results with results of access to a spatial index of documents. These schemes are compared experimentally with a conventional text index search engine, using a collection of geo-tagged web documents, and are shown to be able to compete in speed and storage performance with pure text indexing

    The relationship between IR and multimedia databases

    Get PDF
    Modern extensible database systems support multimedia data through ADTs. However, because of the problems with multimedia query formulation, this support is not sufficient.\ud \ud Multimedia querying requires an iterative search process involving many different representations of the objects in the database. The support that is needed is very similar to the processes in information retrieval.\ud \ud Based on this observation, we develop the miRRor architecture for multimedia query processing. We design a layered framework based on information retrieval techniques, to provide a usable query interface to the multimedia database.\ud \ud First, we introduce a concept layer to enable reasoning over low-level concepts in the database.\ud \ud Second, we add an evidential reasoning layer as an intermediate between the user and the concept layer.\ud \ud Third, we add the functionality to process the users' relevance feedback.\ud \ud We then adapt the inference network model from text retrieval to an evidential reasoning model for multimedia query processing.\ud \ud We conclude with an outline for implementation of miRRor on top of the Monet extensible database system

    Automatic tagging and geotagging in video collections and communities

    Get PDF
    Automatically generated tags and geotags hold great promise to improve access to video collections and online communi- ties. We overview three tasks offered in the MediaEval 2010 benchmarking initiative, for each, describing its use scenario, definition and the data set released. For each task, a reference algorithm is presented that was used within MediaEval 2010 and comments are included on lessons learned. The Tagging Task, Professional involves automatically matching episodes in a collection of Dutch television with subject labels drawn from the keyword thesaurus used by the archive staff. The Tagging Task, Wild Wild Web involves automatically predicting the tags that are assigned by users to their online videos. Finally, the Placing Task requires automatically assigning geo-coordinates to videos. The specification of each task admits the use of the full range of available information including user-generated metadata, speech recognition transcripts, audio, and visual features
    corecore