12,457 research outputs found

    Abduction in Well-Founded Semantics and Generalized Stable Models

    Full text link
    Abductive logic programming offers a formalism to declaratively express and solve problems in areas such as diagnosis, planning, belief revision and hypothetical reasoning. Tabled logic programming offers a computational mechanism that provides a level of declarativity superior to that of Prolog, and which has supported successful applications in fields such as parsing, program analysis, and model checking. In this paper we show how to use tabled logic programming to evaluate queries to abductive frameworks with integrity constraints when these frameworks contain both default and explicit negation. The result is the ability to compute abduction over well-founded semantics with explicit negation and answer sets. Our approach consists of a transformation and an evaluation method. The transformation adjoins to each objective literal OO in a program, an objective literal not(O)not(O) along with rules that ensure that not(O)not(O) will be true if and only if OO is false. We call the resulting program a {\em dual} program. The evaluation method, \wfsmeth, then operates on the dual program. \wfsmeth{} is sound and complete for evaluating queries to abductive frameworks whose entailment method is based on either the well-founded semantics with explicit negation, or on answer sets. Further, \wfsmeth{} is asymptotically as efficient as any known method for either class of problems. In addition, when abduction is not desired, \wfsmeth{} operating on a dual program provides a novel tabling method for evaluating queries to ground extended programs whose complexity and termination properties are similar to those of the best tabling methods for the well-founded semantics. A publicly available meta-interpreter has been developed for \wfsmeth{} using the XSB system.Comment: 48 pages; To appear in Theory and Practice in Logic Programmin

    A Goal-Directed Implementation of Query Answering for Hybrid MKNF Knowledge Bases

    Full text link
    Ontologies and rules are usually loosely coupled in knowledge representation formalisms. In fact, ontologies use open-world reasoning while the leading semantics for rules use non-monotonic, closed-world reasoning. One exception is the tightly-coupled framework of Minimal Knowledge and Negation as Failure (MKNF), which allows statements about individuals to be jointly derived via entailment from an ontology and inferences from rules. Nonetheless, the practical usefulness of MKNF has not always been clear, although recent work has formalized a general resolution-based method for querying MKNF when rules are taken to have the well-founded semantics, and the ontology is modeled by a general oracle. That work leaves open what algorithms should be used to relate the entailments of the ontology and the inferences of rules. In this paper we provide such algorithms, and describe the implementation of a query-driven system, CDF-Rules, for hybrid knowledge bases combining both (non-monotonic) rules under the well-founded semantics and a (monotonic) ontology, represented by a CDF Type-1 (ALQ) theory. To appear in Theory and Practice of Logic Programming (TPLP

    Transformation-Based Bottom-Up Computation of the Well-Founded Model

    Full text link
    We present a framework for expressing bottom-up algorithms to compute the well-founded model of non-disjunctive logic programs. Our method is based on the notion of conditional facts and elementary program transformations studied by Brass and Dix for disjunctive programs. However, even if we restrict their framework to nondisjunctive programs, their residual program can grow to exponential size, whereas for function-free programs our program remainder is always polynomial in the size of the extensional database (EDB). We show that particular orderings of our transformations (we call them strategies) correspond to well-known computational methods like the alternating fixpoint approach, the well-founded magic sets method and the magic alternating fixpoint procedure. However, due to the confluence of our calculi, we come up with computations of the well-founded model that are provably better than these methods. In contrast to other approaches, our transformation method treats magic set transformed programs correctly, i.e. it always computes a relevant part of the well-founded model of the original program.Comment: 43 pages, 3 figure

    SLT-Resolution for the Well-Founded Semantics

    Full text link
    Global SLS-resolution and SLG-resolution are two representative mechanisms for top-down evaluation of the well-founded semantics of general logic programs. Global SLS-resolution is linear for query evaluation but suffers from infinite loops and redundant computations. In contrast, SLG-resolution resolves infinite loops and redundant computations by means of tabling, but it is not linear. The principal disadvantage of a non-linear approach is that it cannot be implemented using a simple, efficient stack-based memory structure nor can it be easily extended to handle some strictly sequential operators such as cuts in Prolog. In this paper, we present a linear tabling method, called SLT-resolution, for top-down evaluation of the well-founded semantics. SLT-resolution is a substantial extension of SLDNF-resolution with tabling. Its main features include: (1) It resolves infinite loops and redundant computations while preserving the linearity. (2) It is terminating, and sound and complete w.r.t. the well-founded semantics for programs with the bounded-term-size property with non-floundering queries. Its time complexity is comparable with SLG-resolution and polynomial for function-free logic programs. (3) Because of its linearity for query evaluation, SLT-resolution bridges the gap between the well-founded semantics and standard Prolog implementation techniques. It can be implemented by an extension to any existing Prolog abstract machines such as WAM or ATOAM.Comment: Slight modificatio

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3Cā€™s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a ā€œWeb of Dataā€

    Super Logic Programs

    Full text link
    The Autoepistemic Logic of Knowledge and Belief (AELB) is a powerful nonmonotic formalism introduced by Teodor Przymusinski in 1994. In this paper, we specialize it to a class of theories called `super logic programs'. We argue that these programs form a natural generalization of standard logic programs. In particular, they allow disjunctions and default negation of arbibrary positive objective formulas. Our main results are two new and powerful characterizations of the static semant ics of these programs, one syntactic, and one model-theoretic. The syntactic fixed point characterization is much simpler than the fixed point construction of the static semantics for arbitrary AELB theories. The model-theoretic characterization via Kripke models allows one to construct finite representations of the inherently infinite static expansions. Both characterizations can be used as the basis of algorithms for query answering under the static semantics. We describe a query-answering interpreter for super programs which we developed based on the model-theoretic characterization and which is available on the web.Comment: 47 pages, revised version of the paper submitted 10/200
    • ā€¦
    corecore