1,476 research outputs found

    Answering regular path queries mediated by unrestricted SQ ontologies

    Get PDF
    A prime application of description logics is ontology-mediated query answering, with the query language often reaching far beyond instance queries. Here, we investigate this task for positive existential two-way regular path queries and ontologies formulated in the expressive description logic , where denotes the extension of the basic description logic with transitive roles () and qualified number restrictions () which can be unrestrictedly applied to both non-transitive and transitive roles (). Notably, the latter is usually forbidden in expressive description logics. As the main contribution, we show decidability of ontology-mediated query answering in that setting and establish tight complexity bounds, namely 2ExpTime-completeness in combined complexity and coNP-completeness in data complexity. Since the lower bounds are inherited from the fragment , we concentrate on providing upper bounds. As main technical tools we establish a tree-like countermodel property and a characterization of when a query is not satisfied in a tree-like interpretation. Together, these results allow us to use an automata-based approach to query answering

    Finite query answering in expressive description logics with transitive roles

    Get PDF
    We study the problem of finite ontology mediated query an-swering (FOMQA), the variant of OMQA where the represented world is assumed to be finite, and thus only finite models of the ontology are considered. We adopt the most typical setting with unions of conjunctive queries and ontologies expressed in description logics (DLs). The study of FOMQA isrelevant in settings that are not finitely controllable. This is the case not only for DLs without the finite model property, but also for those allowing transitive role declarations. When transitive roles are allowed, evaluating queries is challenging: FOMQA is undecidable for SHOIF and only known to be decidable for the Horn fragment of ALCIF. We show decidability of FOMQA for three proper fragments of SOIF: SOI, SOF, and SIF. Our approach is to characterise models relevant for deciding finite query entailment. Relying on a certain regularity of these models, we develop automata-based decision procedures with optimal complexity bounds

    On query answering in description logics with number restrictions on transitive roles

    Get PDF
    We study query answering in the description logic SQ supporting number restrictions on both transitive and non-transitive roles. Our main contributions are (i) a tree-like model property for SQ knowledge bases and, building upon this, (ii) an automata based decision procedure for answering two-way regular path queries, which gives a 3ExpTime upper bound

    Conjunctive Query Answering for the Description Logic SHIQ

    Full text link
    Conjunctive queries play an important role as an expressive query language for Description Logics (DLs). Although modern DLs usually provide for transitive roles, conjunctive query answering over DL knowledge bases is only poorly understood if transitive roles are admitted in the query. In this paper, we consider unions of conjunctive queries over knowledge bases formulated in the prominent DL SHIQ and allow transitive roles in both the query and the knowledge base. We show decidability of query answering in this setting and establish two tight complexity bounds: regarding combined complexity, we prove that there is a deterministic algorithm for query answering that needs time single exponential in the size of the KB and double exponential in the size of the query, which is optimal. Regarding data complexity, we prove containment in co-NP

    Converting Instance Checking to Subsumption: A Rethink for Object Queries over Practical Ontologies

    Full text link
    Efficiently querying Description Logic (DL) ontologies is becoming a vital task in various data-intensive DL applications. Considered as a basic service for answering object queries over DL ontologies, instance checking can be realized by using the most specific concept (MSC) method, which converts instance checking into subsumption problems. This method, however, loses its simplicity and efficiency when applied to large and complex ontologies, as it tends to generate very large MSC's that could lead to intractable reasoning. In this paper, we propose a revision to this MSC method for DL SHI, allowing it to generate much simpler and smaller concepts that are specific-enough to answer a given query. With independence between computed MSC's, scalability for query answering can also be achieved by distributing and parallelizing the computations. An empirical evaluation shows the efficacy of our revised MSC method and the significant efficiency achieved when using it for answering object queries

    Combined FO rewritability for conjunctive query answering in DL-Lite

    Get PDF
    Standard description logic (DL) reasoning services such as satisfiability and subsumption mainly aim to support TBox design. When the design stage is over and the TBox is used in an actual application, it is usually combined with instance data stored in an ABox, and therefore query answering becomes the most importan
    corecore