
On Query Answering in Description Logics with
Number Restrictions on Transitive Roles?

Vı́ctor Gutiérrez-Basulto1, Yazmı́n Ibáñez-Garćıa2, and Jean Christoph Jung3

1 Cardiff University, UK (gutierrezbasultov@cardiff.ac.uk)
2 TU Wien, Austria (ibanez@kr.tuwien.ac.at)

3 Universität Bremen, Germany (jeanjung@informatik.uni-bremen.de)

Abstract. We study query answering in the description logic SQ sup-
porting number restrictions on both transitive and non-transitive roles.
Our main contributions are (i) a tree-like model property for SQ knowl-
edge bases and, building upon this, (ii) an automata based decision
procedure for answering two-way regular path queries, which gives a
3ExpTime upper bound.

1 Introduction

In the last years, several efforts have been put into the study of the query an-
swering problem (QA) in description logics (DLs) featuring transitive roles (or
generalisations thereof, such as regular expressions on roles) and number re-
strictions, see e.g. [1–5] and references therein. However, all these DLs heavily
restrict the interaction between these two features, or altogether forbid number
restrictions on transitive roles. Unfortunately, this comes as a shortcoming in
crucial DL-application areas like medicine and biology in which many terms,
e.g. proteins, are defined and classified according to the number of components
they contain or are part of (in a transitive sense) [6–8].

The lack of investigations of query answering in DLs of this kind is partly
because (i) the interaction of these features often leads to undecidability of the
standard reasoning tasks (e.g. satisfiability) - even in lightweight sub-Boolean
DLs with unqualified number restrictions [9–11]; and (ii) for those DLs known
to be decidable, such as SQ and SOQ [10, 12], only recently tight complex-
ity bounds were obtained [11]. Moreover, even if these features (with restricted
interaction) do not necessarily increase the complexity of QA, they do pose ad-
ditional challenges for devising decision procedures [1–3] since they lead to the
loss of properties, such as the tree model property, which make the design of
algorithms for QA simpler. In fact, these difficulties are present already in DLs
with transitivity, but without number restrictions [3]. Clearly, these issues are
exacerbated if number restrictions are imposed on transitive roles.

The objective of this paper is to start the investigation of query answering
in DLs supporting number restrictions on transitive roles. In particular, we look
at the problem of answering regular path queries, which generalise standard

? V. Gutiérrez-Basulto was supported by a Marie Curie SIRCIW COFUND grant

query languages like positive existential queries, over SQ knowledge bases [21].
We first develop tree-like decompositions of SQ-interpretations based on a novel
unravelling that is specially tailored to handle the interaction of transitivity with
number restrictions. With these decompositions at hand, we design an algorithm
for the query answering problem using two-way alternating tree automata in the
spirit of [1, 4, 5], resulting in a 3ExpTime upper bound (leaving an exponential
gap).

Related Work. Schröder and Pattinson [14] investigate the DL PHQ support-
ing number restrictions on transitive parthood roles, which are, in contrast to
SQ, interpreted as trees: parthood-siblings cannot have a common part. They
show that under this assumption decidability (for satisfiability) can be attained.

There has been some work on the extension of decidable first-order logic
fragments, such as the guarded fragment, with transitivity and counting, see
e.g. [15, 16]. Unfortunately, this case leads to undecidability unless the interaction
is severely restricted [15]. Closer to DLs is the detailed investigation of modal
logics with graded modalities carried out in [17]. Although they study only the
satisfiability problem, we can use one of their techniques here. Finally, in the
context of existential rules, several efforts have been recently made to design
languages with decidable QA supporting transitivity [18–20]. However, we are
not aware of any attempts to additionally support number restrictions.

2 Preliminaries

Syntax. We introduce the DL SQ, which extends the classical DL ALC with
transitivity declarations on roles (S) and qualified number restrictions (Q). We
consider a vocabulary consisting of countably infinite disjoint sets of concept
names NC, role names NR and individual names NI, and assume that NR is
partitioned into two countably infinite sets of non-transitive role names NntR
and transitive role names NtR. The syntax of SQ-concepts C,D is given by the
grammar rule C,D ::= A | ¬C | C u D | (≤ n r C) where A ∈ NC, r ∈ NR,
and n is a number given in binary. We use (≥ n r C) as an abbreviation for
¬(≤ (n−1) r C), and other standard abbreviations like ⊥, >, CtD, ∃r.C, ∀r.C.
Concepts of the form (≤ n r C) and (≥ n r C) are called at most-restrictions
and at least-restrictions, respectively.

An SQ-TBox T is a finite set of concept inclusions C v D where C,D are
SQ-concepts. An ABox is a finite set of concept and role assertions of the form
A(a), r(a, b) where A ∈ NC, r ∈ NR and {a, b} ⊆ NI; ind(A) denotes the set of
individual names occurring in A. A knowledge base (KB) K is a pair (T ,A).

Semantics. As usual, the semantics is defined in terms of interpretations. An
interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and an inter-
pretation function ·I mapping concept names to subsets of the domain and role
names to binary relations over the domain such that transitive role names are
mapped to transitive relations. We define, mutually recursive, the set

rI(d,C) = {e ∈ CI | (d, e) ∈ rI}

of r-successors of d satisfying C, and CI for complex C by interpreting ¬ and
u as usual and (≤ n r D)I by taking

(≤ n r D)I = {d ∈ ∆I | |rI(d,D)| ≤ n}.

For ABoxes A we adopt the standard name assumption (SNA), that is, aI = a,
for all a ∈ ind(A). The satisfaction relation |= is defined in the standard way:

I |= C v D iff CI ⊆ DI ; I |= A(a) iff a ∈ AI ; I |= r(a, b) iff (a, b) ∈ rI .

An interpretation I is a model of a TBox T , denoted I |= T , if I |= α for all
α ∈ T ; it is a model of an ABox A, written I |= A, if I |= α for all α ∈ A; it is
a model of a KB K if I |= T and I |= A. A KB is satisfiable if it has a model.

Query Language. As query language, we consider regular path queries, sup-
porting regular expressions over roles. Recall that a regular expression E over an
alphabet Σ is given by the grammar E ::= ε | σ | E·E | E ∪ E | E∗, where σ ∈ Σ
and ε denotes the empty word. We denote with L(E) the language defined by E .

We use N±R to refer to NR ∪ {r− | r ∈ NR} with (r−)I defined as {(d, e) |
(e, d) ∈ rI}, and identify r− with s ∈ NR if r = s−. A positive 2-way regular path
query (P2RPQ) is a formula of the form q(x) = ∃y.ϕ(x,y) where x and y are
tuples of variables and ϕ is constructed using ∧ and ∨ of atoms of the form A(t)
or E(t, t′) where A ∈ NC, E is a regular expression over S ::= N±R ∪{A? | A ∈ NC},
and t, t′ terms, i.e. individual names or variables from x,y. We define as usual,
when a possible answer tuple a ∈ ind(A) is a certain answer of q over K [5, 22],
and write K |= q(a) in case it is.

Reasoning Problem. We study the certain answers problem: Given a KB K, a
query q(x) and a tuple of individuals a, determine whether K |= q(a). Without
loss of generality, we consider Boolean queries.

3 Decomposing SQ-Interpretations

A

B

¬B

C

r

r

r

r

Fig. 1.

Existing algorithms for QA in expressive DLs, e.g. SHIQ
(without number restrictions on transitive roles), exploit the
fact that for answering queries it suffices to consider canoni-
cal models that are forest-like roughly consisting of an inter-
pretation of the ABox and a collection of tree-interpretations
whose roots are elements of the ABox. However, for SQ this
tree-model property is lost:

Example 1. Let T = {A v (≤ 1 r C) u ∃r.B u ∃r.¬B;> v
∃r.C} with r ∈ NtR. Indeed, the number restrictions in T force
that every model of T satisfying A contains a structure like
that in Fig. 1 (transitivity connections are not depicted), and thus is not a tree.

Nevertheless, we show that it is possible to define tree-like canonical models
for SQ that suffice for query answering. We start with introducing a basic form
of tree decompositions of SQ-interpretations. A tree is a connected, acyclic graph

(T,E) with a distinguished root, which we usually denote with ε. For a node
w ∈ T \ {ε}, we denote with pre(w) the predecessor of w in T . A bag M is a set
of assertions of the form A(d), r(d, e); M is called an r-bag for some role name
r, if s = r for all role atoms s(d, d′) ∈M .

Definition 1. A tree decomposition T of I is a tuple (T,E, bg, rl) such that
(T,E) is a tree and, bg and rl assign, respectively, a bag and a role name to
every node w in T such that the following conditions are satisfied:

(i) AI = {d | A(d) ∈ bg(w), w ∈ T}, for all A ∈ NC;
(ii) rI = Rr for non-transitive r and rI = R+

r for transitive r, where

Rr =
⋃
w∈T

Rr,w with Rr,w = {(d, e) | r(d, e) ∈ bg(w)};

(iii) bg(w) is an rl(w)-bag for all w ∈ T \ {ε};
(iv) the relation Rr,w is transitive for all w ∈ T and r ∈ NtR;
(v) for all d ∈ ∆I , the set of nodes whose bag uses d is connected in (T,E).

Note that Point (ii) for transitive roles can be equivalently formulated as fol-
lows: (d, e) ∈ rI iff there is an r-path from d to e in T, that is, a sequence
d0, w0, d1, . . . , dn such that d = d0, e = dn, and r(di, di+1) ∈ bg(wi), for all
0 ≤ i < n. This simple formalisation is not yet amenable for tree automata since
facts r(di, di+1) can appear far away from each other in the decomposition.

To address this, we introduce canonical decompositions which provide a
canonical way of accessing all r-successors. Intuitively, this is achieved by al-
lowing new successors of, say, d to appear only at certain nodes. In order to
formalise this, denote with dom(M) the set of domain elements occurring in bag
M , and with F (w) the domain elements that are fresh in the bag at w, that is,
they did not appear before. Moreover, define a function Fr(w) by taking

Fr(w) =

{
dom(bg(w)) if r ∈ NtR, r 6= rl(pre(w)), and pre(w) 6= ε

F (w) otherwise,

to relativize fresh elements to a role name r.
For a transitive role r, we call ∅ (a ⊆ dom(M) an r-cluster in M if

(i) r(a, b) ∈ M for all a 6= b ∈ a, and (ii) for all a ∈ a, b ∈ dom(M) with
r(a, b), r(b, a) ∈ M , we have b ∈ a. An r-cluster a in M is an r-root cluster in
M if r(d, e) ∈M for all d ∈ a and e ∈ dom(M) \ a.

Definition 2. A tree decomposition (T,E, bg, rl) of I is canonical if the follow-
ing conditions are satisfied for every w ∈ T with M = bg(w) and r = rl(w) and
every successor w′ of w with M ′ = bg(w′) and r′ = rl(w′):

(C1) M and M ′ are overlap isomorphic relative to r′, that is, for all d, e ∈
dom(M) ∩ dom(M ′), we have A(d) ∈ M iff A(d) ∈ M ′, for all A ∈ NC,
and r′(d, e) ∈M iff r′(d, e) ∈M ′;

(C2) if r′ ∈ NntR , then dom(M ′) = {d, e}, for some d ∈ F (w), e ∈ F (w′), and
r′(d, e) is the only role assertion in M ′;

(C3) if r′ ∈ NtR and r 6= r′, then there are d ∈ F (w) and an r-root cluster a in
M ′ such that dom(M) ∩ dom(M ′) = {d} and d ∈ a; moreover, there is no
successor v′ of w different from w′ satisfying this for d and rl(v′) = r′;

(C4) if r′ ∈ NtR and r = r′, there is an r-cluster a in M with a ⊆ Fr(w), and:

(a) a is an r-root cluster in M ′;
(b) for all d ∈ a and r(d, e) ∈M , we have e ∈ dom(M ′); and
(c) for all r(d, e) ∈M ′, d ∈ a ∪ F (w′) or e /∈ F (w′).

Intuitively, Definition 2 imposes restrictions on the structural relation between
neighbouring bags. Note that (C2) is also satisfied by standard unravelling over
non-transitive roles [23]. More interestingly, (C3) reflects that bags for differ-
ent role names do only interact via single domain elements; this conforms with
viewing SQ as a fusion logic [24]. Finally, (C4) plays the role of (C2), but for
transitive roles, by describing successors of an r-cluster a.

As a consequence of Definition 2, r-paths can be assumed to be of a certain
shape. We call an r-path d0, w0, d1, . . . , wn−1, dn in some tree decomposition T
downward if wi is a successor of wi−1 and di is in an r-root cluster in wi, for all
0 < i < n. An r-path in T is canonical if P1: it is downward; or P2: d0 ∈ Fr(w0),
d1 /∈ Fr(w0), and, if n > 1, then d1 ∈ Fr(pre(w1)), pre(w1) is an ancestor of w0,
and d1, w1, . . . , dn is a downward path in T. Two r-paths d0, w0, d1, . . . , wn−1, dn
and e0, w

′
0, e1, . . . , w

′
m−1, em from d to e are equivalent if n = m, wi = w′i, for

0 ≤ i < n, and di and ei are in the same r-cluster in bg(wi), for every 1 ≤ i < n.

Lemma 1. Let r ∈ NtR, d, e ∈ ∆I with (d, e) ∈ rI . Then there is a unique
canonical r-path (up to equivalence) from d to e in T.

Lemma 1 establishes the basis of a canonic way of identifying r-successors in a
tree decomposition which is essential for the design of tree automata. We next
give the main technical contribution of our paper: an unravelling operation into
canonical decompositions of small width, and consequently a tree-like model
property for SQ-interpretations.

3.1 Unravelling into Canonical Decompositions

A tree decomposition (T,E, bg, rl) has width k − 1 if k is the maximum size of
dom(bg(w)), where w ranges over T ; its outdegree is the outdegree of (T,E).

Theorem 1. Let K = (T ,A) be an SQ KB and I |= K. Then, there is an
interpretation J and a canonical tree decomposition (T,E, bg, rl) of J such that:

(1) A ⊆ bg(ε);
(2) J |= K;
(3) there is a homomorphism from J to I;
(4) width and outdegree of (T,E, bg, rl) are bounded by O(|A| · 2poly(|T |)).

We outline the proof of Theorem 1. As a first step, we show that wlog. we can
assume that I has a restricted outdegree and width, as defined below. This will

be used later on to ensure the satisfaction of Condition (4) above. Given d ∈ ∆I
and a transitive role r, the r-cluster of d in I, denoted by QI,r(d), is the set
of all elements e ∈ ∆I such that both (d, e) ∈ rI and (e, d) ∈ rI . The width of
I is the minimum k such that |QI,r(d)| ≤ k for all d ∈ ∆I , r ∈ NtR. Moreover,
for a transitive role r, we say that e is a direct r-successor of d if (d, e) ∈ rI

but e /∈ QI,r(d), and for each f with (d, f), (f, e) ∈ rI , we have f ∈ QI,r(d) or
f ∈ QI,r(e); if r is non-transitive, then e is a direct r-successor of d if (d, e) ∈ rI .
The breadth of I is the maximum k such that there are d, d1, · · · , dk and a role
name r, all di are direct r-successors of d, and

– if r is non-transitive, then di 6= dj for all i 6= j;
– if r is transitive, then QI,r(di) 6= QI,r(dj), for all i 6= j.

We can assume that width and breath of I are within the following boundaries.

Lemma 2 (adapting [17, 11]). For each I |= K, there is a sub-interpretation
I ′ of I with I ′ |= K and width and breadth of I ′ are bounded by O(|A|+2poly(|T |)).

We need to introduce one more notion for dealing with at-most restrictions over
transitive roles. Let cl(T) be the set of all subconcepts occurring in T , closed
under single negation. For each transitive role r, define a binary relation I,r
on ∆I , by taking d I,r e if there is some (≤ n r C) ∈ cl(T) such that
d ∈ (≤ n r C)I , e ∈ CI , and (d, e) ∈ rI . Based on the transitive, reflexive
closure ∗I,r of I,r, we define, for every d ∈ ∆I , the set WitI,r(d) of witnesses
for d by taking

WitI,r(d) =
⋃

e|d ∗I,re

QI,r(e).

Intuitively, WitI,r(d) contains all witnesses of at-most restrictions of some el-
ement d, and due to using ∗I,r, also the witnesses of at-most restrictions of
those witnesses and so on. It is important to note that the size of WitI,r(T) is
bounded exponentially in T (and linearly in A), see appendix.

We are now ready to describe the construction of the interpretation J and its
tree decomposition via a possibly infinite unravelling process. Elements of ∆J

will be either of the form a with a ∈ ind(A) or of the form dx with d ∈ ∆I and
some index x. We usually use δ to refer to domain elements in J (in either form),
and define a function τ : ∆J → ∆I by setting τ(δ) = δ, for all δ ∈ ind(A), and
τ(δ) = d, for all δ of the form dx in ∆J . Further, we denote with bagJ (∆), for
some ∆ ⊆ ∆J , the bag of assertions associated to ∆ in J , and with bagJ ,r(∆)
the maximal r-bag contained in bagJ (∆).

To start the construction of J and (T,E, bg, rl), we set J = I|ind(A) and, for
every transitive role r, define two sets ∆r, ∆

′
r by taking

∆r = {dr | d ∈
⋃

a∈ind(A)

WitI,r(a) \ ind(A)} and ∆′r = ∆r ∪ ind(A),

Then extend J by adding, for each transitive r, ∆r to the domain and extending
the interpretation of concept and role names such that, for all δ, δ′ ∈ ∆′r, we have

δ ∈ AJ ⇔ τ(δ) ∈ AI , for all A ∈ NC, and (δ, δ′) ∈ rJ ⇔ (τ(δ), τ(δ′)) ∈ rI . (†)

Now, initialise (T,E, bg, rl) with T = {ε}, E = ∅, bg(ε) = bagJ (∆J) and
rl(ε) = s, for some s not appearing in K. Intuitively, this first step ensures
that all witnesses of ABox individuals appear in the first bag. This finishes the
initialisation phase.

Next, extend J and (T,E, bg, rl) by applying the following rules exhaustively
and in a fair way:

R1 Let r be non-transitive, w ∈ T , δ ∈ F (w), and d a direct r-successor of τ(δ)
in I with {δ, d} 6⊆ ind(A). Then, add a fresh successor v of w to T , add a
fresh element dv to ∆J , extend J by adding (δ, dv) ∈ rJ and dv ∈ AJ iff
d ∈ AI , for all A ∈ NC, and set bg(v) = bagJ ,r({δ, dv}) and rl(v) = r.

R2 Let r be transitive, w ∈ T , and δ ∈ F (w) such that:
(a) w = ε and δ ∈ ∆s, s 6= r (∆s defined in the initialisation phase), or
(b) w 6= ε and rl(w) 6= r.

Then add a fresh successor v of w to T , and define

∆ = {ev | e ∈WitI,r(τ(δ)) \ {τ(δ)}} and ∆′ = ∆ ∪ {δ}.
Then extend the domain of J with ∆ and the interpretation of concept and
role names such that (†) is satisfied for all δ, δ′ ∈ ∆′. Finally, set bg(v) =
bagJ ,r(∆

′) and rl(v) = r.

R3 Let r be transitive, w ∈ T , a ⊆ Fr(w) an r-cluster in bg(w) such that:
(a) w = ε and a ⊆ ∆′r, or
(b) w 6= ε and rl(w) = r.
If there is a direct r-successor e of τ(δ) in I for some δ ∈ a such that
(δ, δ′) /∈ rJ for any δ′ with τ(δ′) = e, then add a fresh successor v of w to
T , and define

∆ = {fv | f ∈WitI,r(e) \WitI,r(τ(δ))} and

∆′ = ∆ ∪ a ∪ {δ′′ | r(δ′, δ′′) ∈ bg(w) for some δ′ ∈ a}

Then extend the domain of J with ∆ and the interpretation of concept
names such that (†) is satisfied for all pairs δ, δ′ with δ ∈ a∪∆ and δ′ ∈ ∆′.
Finally, set bg(v) = bagJ ,r(∆

′) and rl(v) = r.

Rules R1–R3 are, respectively, in one-to-one correspondence with Conditions
(C2)-(C4) in Definition 2. In particular, R1 implements the well-known unravel-
ling procedure for non-transitive roles. R2 describes how to change the ‘role com-
ponent’; note in particular that together with δ, the newly created bag contains
all witnesses WitI,r(d) of d relative to r where d = τ(δ). Finally, R3 describes
how to unravel direct r-successors in case of transitive roles r. Observe that,
in the definition of ∆ it is taken care that witnesses which are ‘inherited’ from
predecessors are not introduced again, in order to preserve at-most restrictions.

Example 2. Let T = {A1 v (≤ 1 r B);A2 v (≤ 1 r C)} with r ∈ NtR. The
figure below shows a model I of T together with a canonical decomposition T of
its unravelling. Note that f ∈ WitI,r(a) since a I,r e and e I,r f . Defining
WitI,r(a) in this way is crucial as otherwise elements fv1 and fv2 are introduced
in the unravelling and it would then not be a model of T .

Based on these intuitions it is verified in the appendix that (T,E, bg, rl)
is a canonical tree decomposition of J , and Conditions (1)–(4) of Theorem 1
are satisfied. Theorem 1 yields a tree-like model property for SQ-knowledge
bases, which is interesting on its own, since existing decidability results (for
satisfiability) [10, 11] are based on the finite model property.

4 Automata-Based Approach to Query Answering

In this section, we devise an automata-based decision procedure for query an-
swering in SQ. By Theorem 1, if K 6|= q, there is an interpretation of small
width and outdegree witnessing this. The idea is now to design two automata
AK and Aq working over tree decompositions which accept precisely the models
(of the established width) of the KB K and the query q, respectively. The query
answering problem can then be reduced to the question whether some tree is
accepted by AK, but not by Aq [5].

Trees are represented as prefix-closed subsets T ⊆ (N \ {0})∗ such that addi-
tionally, wc ∈ T implies w(c−1) ∈ T for all c > 1. A tree is k-ary if each node has
exactly k successors. As a convention, we set w · 0 = w and wc · (−1) = w, leave
ε · (−1) undefined, and for any k ∈ N, set [k] = {−1, 0, . . . , k}. Let Σ be a finite
alphabet. A Σ-labelled tree is a pair (T, τ) with T a tree and τ : T → Σ assigns
a letter from Σ to each node. An alternating 2-way tree automaton (2ATA) over
Σ-labelled k-ary trees is a tuple A = (Q,Σ, q0, δ, F) where Q is a finite set of
states, q0 ∈ Q is an initial state, δ is the transition function, and F is the (parity)
acceptance condition [28]. The transition function maps a state q and an input
letter a ∈ Σ to a positive Boolean formula over the constants true and false, and
variables from [k]×Q. The semantics is given in terms of runs, see the appendix.
As usual, L(A) denotes the set of trees accepted by A.

We set k to the bound on the outdegree given by Theorem 1. Tree decom-
positions T can be represented as k-ary (M × NR)-labelled trees, where M is
the set of all bags in T, but 2ATAs cannot run over such trees because the do-
main underlying the bags is potentially infinite. However, it is well-known that
(M× NR)-labelled trees with restricted bag size ≤ K can be encoded using 2K
domain elements [25, 26]. More precisely, let K be an SQ KB, let K be the
bound on the width obtained in Theorem 1, and choose a set of elements ∆

of size 2K. We then use as input alphabet Σ the set of all pairs 〈M,x〉 such
that |dom(M)| ≤ K, x is a role appearing in K or ε, and, if x = r, then M is
an r-bag. Moreover, we include a special symbol ⊥ because tree decompositions
are not uniformly branching, but 2ATAs work over k-ary trees. A Σ-labelled
tree (T, τ) represents a (M × NR)-labelled tree (T, τ ′) as follows. Each domain
element d ∈ ∆ induces an equivalence relation ∼d on T by taking v ∼d w iff d
appears in all bags on the path from v to w. Domain elements in the represented
tree decomposition are then all equivalence classes obtained in this way; more
precisely, for all w ∈ T :

τ ′(w) = {A([w]∼d
) | A(d) ∈ τ(w))} ∪ {r([w]∼d

, [w]∼e
) | r(d, e) ∈ τ(w)}.

We can now associate with each (T, τ) the unique interpretation IT,τ such that
(T, τ ′) satisfies Points (i) and (ii) of being a tree decomposition of IT,τ .

Lemma 3. There are 2ATAs A1,A2,A3 of size O(|A| · 2poly(|T |) such that:
(T, τ) ∈ L(A1) iff (T, τ ′) is a canonical decomposition (of some interpretation);
(T, τ) ∈ L(A2) iff IT,τ |=A, and (T, τ) ∈ L(A3) iff IT,τ |=T .

The mentioned automaton AK is obtained as the conjunction of A1, A2, and A3.
Note that Ak can be used to decide KB satisfiability in double exponential time,
thus not optimal [11]. As the 2ATAs A1 and A2 are relatively straightforward,
we concentrate here on A3. Let nnf(T) denote the set of subformulas appearing
in T in negation normal form and closed under single negation, and ∼D the
negation normal form of ¬D. Moreover, let Rol(K) be the set of role names
appearing in K. Then, define A3 = (Q3, Σ, q0, δ3, F3); start by including in Q3

{q0} ∪Qnt ∪Qt ∪ {Fx,d, F ′x,d, F x,d, F
′
x,d | d ∈ ∆,x ∈ {ε} ∪ Rol(K)} ∪

{qd, qC,d | C ∈ nnf(T), d ∈ ∆} ∪ {q∗C,d, q′C,d | C=(∼ n rD)∈nnf(T), d ∈ ∆}

where Qt and Qnt are the states that are used after entering states q∗(∼n rD),d for
transitive and non-transitive roles, respectively. Then, we define the transition
function for all states except states of the form q∗(∼n rD),d:

δ3(q0, 〈M,x〉) =
∧
i∈[k]

(i, q0) ∧
∧

d∈dom(M)

∧
CvD∈T

(
(0, q∼C,d) ∨ (0, qD,d)

)
δ3(q0,⊥) = true

δ3(qA,d, 〈M,x〉) = if A(d) ∈M , then true else false

δ3(q¬A,d, 〈M,x〉) = if A(d) /∈M , then true else false

δ3(qC1tC2,d, 〈M,x〉) = (0, qC1,d) ∨ (0, qC2,d)

δ3(qC1uC2,d, 〈M,x〉) = (0, qC1,d) ∧ (0, qC2,d)

δ3(q(∼n rD),d, 〈M,x〉) =
(
(0, Fx,d) ∧ (0, q∗(∼n rD),d)

)
∨
∨
i∈[k]

(i, q(∼n rD),d) ∧ (i, qd)

δ3(qd, 〈M,x〉) = if d ∈ dom(M), then true else false

δ3(Fε,d, 〈M,x〉) = true

δ3(Fr,d, 〈M,x〉) =

{
(−1, F ′r,d) if r ∈ NntR or (r ∈ NtR and x = r)

false otherwise

δ3(F ′r,d, 〈M,x〉) =

{
true d /∈ dom(M) or (r ∈ NtR and x /∈ {ε, r})
false otherwise

Intuitively, q0 is used to verify that the TBox is globally satisfied. A state qC,d
assigned to a node w is used as an obligation to verify that the element d satisfies
the concept C. This can be done locally for Boolean concept constructors u,t,¬,
as implemented in the transitions above. For concepts of the form (∼ n r D), we
have to be more careful: the automaton has to move to the unique node w where
d ∈ Fr(w), identified using states Fr,d and qd (and the accepting condition).

The transitions for number restrictions on non-transitive roles are relatively
simple, see the appendix. For transitive roles, we exploit Lemma 1 which provides
the following observation: For counting the r-successors satisfying D of some
element d ∈ dom(bg(w)), it suffices to look at three “locations” in the tree
decomposition: in the bag at w itself, along canonical paths satisfying P1, and
along canonical paths satisfying P2. We implement this strategy for at-least
restrictions. In the following transitions, we assume that a1, . . . ,a` are all r-
clusters in M , and that a1, . . . , a` are representatives of each cluster. A partition
n1 + . . . + n` = n respects M relative to d if ni = 0 whenever r(d, ai) /∈ M ; it
d-respects M relative to d if ni = 0 whenever r(d, ai) /∈ M or d ∈ ai. Moreover,
we define Mr(d) = {e | r(d, e), r(e, d) ∈ M}, and define transitions for (the
complement of Fx,d) F x,d similar to Fx,d.

δ3(q∗(≥n rD),d, 〈M,x〉) =
∨

n1+...+n`=n
respects M rel. to d

∧
ni 6=0

(0, q0(≥ni r D),ai
) ∨ (0, q1(≥ni r D),ai

)

δ3(q0(≥n rD),d, 〈M,x〉) = (0, Fr,d) ∧ (0, q↓(≥n rD),d)

δ3(q1(≥n rD),d, 〈M,x〉) = (0, F r,d) ∧ (−1, q↑(≥n rD),d)

δ3(q↓(≥n rD),d, 〈M,x〉) =
∨

n0+n1+...+nk=n

(0, pn0,r,D,d) ∧
∧
ni 6=0

(i, p(≥ni r D),d)

δ3(pn,r,D,d, 〈M,x〉) =
∨

Y⊆Mr(d),|Y |=n

(∧
e∈Y

qD,e ∧
∧

y∈Mr(d)\Y

q∼D,e

)
δ3(p(≥n rD),d,⊥) = if n = 0, then true else false

δ3(p(≥n rD),d, 〈M,x〉) =


false if x 6= r or d not in root cluster∨

n1+...+n`=n
d-respects M rel. to d

∧
ni 6=0

(0, q0(≥ni r D),ai
) otherwise

δ3(q↑(≥n rD),d, 〈M,x〉) = (0, qd) ∧
(
(0, q0(≥n rD),d) ∨ (0, q1(≥n rD),d)

)
Intuitively, the automaton non-deterministically guesses a partition n1+ . . .+nk
of n and verifies that, starting from ai at least ni elements are reachable via r
and satisfy D. For each such r-cluster, it proceeds either downwards (in states

of the form q0· and q↓·) or looks for the world where the cluster ai was a root (in

states q1· and q↑·) and proceeds downwards from there on. In states q↓(≥n rD),d, the

automaton again partitions n this time into n0, . . . , nk; it then verifies that there
are n0 elements in the r-cluster of d satisfying D and, recursively, that via the
i-th successor of the current node, there are ni elements that are reachable via
r and satisfy D. Using the parity condition, we make sure that states q↓(≥n rD),d

with n ≥ 1 are not suspended forever, that is, eventualities are finally satisfied.
For the at-most restrictions, recall that that (≤ n r D) is equivalent to ¬(≥

n+1 r D); we can thus obtain the transitions for q(≤n rD),d by “complementing”
the transitions for q(≥n+1 r D),d; details are given in the appendix.

In order to construct, for a given query q, an automaton Aq which accepts a
tree (T, τ) ∈ L(A1) iff IT,τ |= q, we adapt and extend ideas from [5] to canonical
tree decompositions. The result is a nondeterministic parity tree automaton
(defined in the standard way [27]) of size exponential in q, and doubly exponential
in K. Note that, in contrast to [5], the query automaton depends on the KB
because for checking whether a fact r(x, y) from the query is true (given some
match candidate), it has to recall domain elements in the states; their number,
however, is bounded by the width only. It remains to remark that the question
of whether L(AK) \ L(Aq) is empty can be decided in 3ExpTime, given the
mentioned bounds on the sizes of the involved automata.

Theorem 2. The certain answers problem for P2RQPs over SQ-KBs is decid-
able in 3ExpTime.

5 Discussion and Future Work

We have launched the research on ontological query answering in DLs with
number restrictions on transitive roles. We have particularly developed a tree-
like decomposition handling the interaction of these features that enables the
use of automata-based techniques for query answering. Our techniques yield a
3ExpTime upper bound, leaving an exponential gap to the known 2ExpTime
lower bound, for answering positive existential queries over ALC KBs [5].

As immediate future work, we plan to close this gap, taking into account also
other techniques for query answering such as rewriting [2]. Another interesting
and relevant question is the precise data complexity – the present techniques
give only exponential bounds, but we expect coNP-completeness. Moreover, we
plan to extend our approach to nominals and inverses. It is known that allowing
for number restrictions over both roles and inverse roles leads to undecidability
of the satisfiability problem [10]; but it is open what happens if one allows only
one of the two for every role name. We will also look at the problem of answer-
ing conjunctive queries (CQs) in SQ; in general, the proposed automata-based
approach yields the same upper bound for the problem of answering P2RPQs or
CQs, but we expect it to be easier for CQs. Finally, we plan to see whether our
techniques extend to the query containment problem, and develop techniques
for finite query answering in (extensions of) SQ.

References

1. Glimm, B., Horrocks, I., Sattler, U.: Unions of conjunctive queries in SHOQ. In:
Proc. of KR-08. (2008) 252–262

2. Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Conjunctive query answering for
the description logic SHIQ. J. Artif. Intell. Res. (JAIR) 31 (2008) 157–204

3. Eiter, T., Lutz, C., Ortiz, M., Simkus, M.: Query answering in description logics
with transitive roles. In: Proc. of IJCAI-09. (2009) 759–764

4. Calvanese, D., Eiter, T., Ortiz, M.: Regular path queries in expressive description
logics with nominals. In: Proc. of IJCAI-09. (2009) 714–720

5. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive
description logics via alternating tree-automata. Inf. Comput. 237 (2014) 12–55

6. Wolstencroft, K., Brass, A., Horrocks, I., Lord, P., Sattler, U., Turi, D., Stevens,
R.: A little semantic web goes a long way in biology. In: Proc. of ISWC-05. (2005)

7. Rector, A.L., Rogers, J.: Ontological and practical issues in using a description
logic to represent medical concept systems: Experience from GALEN. In: In Proc.
of RW-06. (2006) 197–231

8. Stevens, R., Aranguren, M.E., Wolstencroft, K., Sattler, U., Drummond, N., Hor-
ridge, M., Rector, A.L.: Using OWL to model biological knowledge. International
Journal of Man-Machine Studies 65(7) (2007) 583–594

9. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive descrip-
tion logics. Logic Journal of the IGPL 8(3) (2000) 239–263

10. Kazakov, Y., Sattler, U., Zolin, E.: How many legs do I have? non-simple roles in
number restrictions revisited. In: Proc. of LPAR-07. (2007) 303–317

11. Gutiérrez-Basulto, V., Ibáñez-Garćıa, Y., Jung, J.C.: Number restrictions on tran-
sitive roles in description logics with nominals. In: Proc. of AAAI-17. (2017)

12. Kaminski, M., Smolka, G.: Terminating tableaux for SOQ with number restrictions
on transitive roles. In: Theoretical Computer Science - 6th IFIP TC Proceedings.
(2010) 213–228

13. Bienvenu, M., Eiter, T., Lutz, C., Ortiz, M., Simkus, M.: Query answering in the
description logic S. In: Proc. of DL-10. (2010)

14. Schröder, L., Pattinson, D.: How many toes do I have? parthood and number
restrictions in description logics. In: Proc. of KR-08. (2008) 307–317

15. Tendera, L.: Counting in the two variable guarded logic with transitivity. In: Proc.
of STACS-05. (2005) 83–96

16. Pratt-Hartmann, I.: The two-variable fragment with counting and equivalence.
Math. Log. Q. 61(6) (2015) 474–515

17. Kazakov, Y., Pratt-Hartmann, I.: A note on the complexity of the satisfiability
problem for graded modal logics. In: Proc. of LICS-09. (2009) 407–416

18. Gottlob, G., Pieris, A., Tendera, L.: Querying the guarded fragment with transi-
tivity. In: Proc. of ICALP-13. (2013) 287–298

19. Baget, J., Bienvenu, M., Mugnier, M., Rocher, S.: Combining existential rules and
transitivity: Next steps. In: Proc. of IJCAI-15. (2015) 2720–2726

20. Amarilli, A., Benedikt, M., Bourhis, P., Vanden Boom, M.: Query answering with
transitive and linear-ordered data. In: Proc. of IJCAI-16. (2016) 893–899

21. Hollunder, B., Baader, F.: Qualifying number restrictions in concept languages.
In: Proc. of KR-91. (1991) 335–346

22. Bienvenu, M., Ortiz, M., Simkus, M.: Regular path queries in lightweight descrip-
tion logics: Complexity and algorithms. J. Artif. Intell. Res. (JAIR) 53 (2015)
315–374

23. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applications,
Cambridge University Press (2003)

24. Baader, F., Lutz, C., Sturm, H., Wolter, F.: Fusions of description logics and
abstract description systems. J. Artif. Intell. Res. (JAIR) 16 (2002) 1–58

25. Grädel, E., Walukiewicz, I.: Guarded fixed point logic. In: Proc. of LICS-99. (1999)
45–54

26. Benedikt, M., Bourhis, P., Vanden Boom, M.: A step up in expressiveness of
decidable fixpoint logics. In: Proc. of LICS-16. (2016) 817–826

27. Grädel, E., Thomas, W., Wilke, T., eds.: Automata, Logics, and Infinite Games:
A Guide to Current Research. Volume 2500 of LNCS., Springer

28. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Proc. ICALP-
98. (1998) 628–641

