6 research outputs found

    幾何レヴィ過程に対する局所リスク最小化戦略とその数値解析的研究

    Get PDF
    早大学位記番号:新7274早稲田大

    On a quaternification of complex Lie algebras

    Full text link
    We give a definition of quaternion Lie algebra and of the quaternification of a complex Lie algebra. By our definition gl(n,H), sl(n,H), so*(2n) ans sp(n) are quaternifications of gl(n,C), sl(n,C), so(n,C) and u(n) respectively. Then we shall prove that a simple Lie algebra admits the quaternification. For the proof we follow the well known argument due to Harich-Chandra, Chevalley and Serre to construct the simple Lie algebra from its corresponding root system. The root space decomposition of this quaternion Lie algebra will be given. Each root sapce of a fundamental root is complex 2-dimensional

    Quaternifications and Extensions of Current Algebras on S3

    No full text
    Let (mathbf{H}) be the quaternion algebra. Let (mathfrak{g}) be a complex Lie algebra and let (U(mathfrak{g})) be the enveloping algebra of (mathfrak{g}). The quaternification (mathfrak{g}^{mathbf{H}}=)(,(,mathbf{H}otimes U(mathfrak{g}),,[quad,quad]_{mathfrak{g}^{mathbf{H}}},)) of (mathfrak{g}) is defined by the bracket ( big[,mathbf{z}otimes X,,,mathbf{w}otimes Y,big]_{mathfrak{g}^{mathbf{H}}},=)(,(mathbf{z}cdot mathbf{w})otimes,(XY),- )(, (mathbf{w}cdotmathbf{z})otimes (YX),,nonumber ) for (mathbf{z},,mathbf{w}in mathbf{H}) and {the basis vectors (X) and (Y) of (U(mathfrak{g})).} Let (S^3mathbf{H}) be the ( non-commutative) algebra of (mathbf{H})-valued smooth mappings over (S^3) and let (S^3mathfrak{g}^{mathbf{H}}=S^3mathbf{H}otimes U(mathfrak{g})). The Lie algebra structure on (S^3mathfrak{g}^{mathbf{H}}) is induced naturally from that of (mathfrak{g}^{mathbf{H}}). We introduce a 2-cocycle on (S^3mathfrak{g}^{mathbf{H}}) by the aid of a tangential vector field on (S^3subset mathbf{C}^2) and have the corresponding central extension (S^3mathfrak{g}^{mathbf{H}} oplus(mathbf{C}a)). As a subalgebra of (S^3mathbf{H}) we have the algebra of Laurent polynomial spinors (mathbf{C}[phi^{pm}]) spanned by a complete orthogonal system of eigen spinors ({phi^{pm(m,l,k)}}_{m,l,k}) of the tangential Dirac operator on (S^3). Then (mathbf{C}[phi^{pm}]otimes U(mathfrak{g})) is a Lie subalgebra of (S^3mathfrak{g}^{mathbf{H}}). We have the central extension (widehat{mathfrak{g}}(a)= (,mathbf{C}[phi^{pm}] otimes U(mathfrak{g}) ,) oplus(mathbf{C}a)) as a Lie-subalgebra of (S^3mathfrak{g}^{mathbf{H}} oplus(mathbf{C}a)). Finally we have a Lie algebra (widehat{mathfrak{g}}) which is obtained by adding to (widehat{mathfrak{g}}(a)) a derivation (d) which acts on (widehat{mathfrak{g}}(a)) by the Euler vector field (d_0). That is the (mathbf{C})-vector space (widehat{mathfrak{g}}=left(mathbf{C}[phi^{pm}]otimes U(mathfrak{g})right)oplus(mathbf{C}a)oplus (mathbf{C}d)) endowed with the bracket ( bigl[,phi_1otimes X_1+ lambda_1 a + mu_1d,,phi_2otimes X_2 + lambda_2 a + mu_2d,,bigr]_{widehat{mathfrak{g}}} , =)( (phi_1phi_2)otimes (X_1,X_2) , -,(phi_2phi_1)otimes (X_2X_1)+mu_1d_0phi_2otimes X_2- ) (mu_2d_0phi_1otimes X_1 + ) ( (X_1vert X_2)c(phi_1,phi_2)a,. ) When (mathfrak{g}) is a simple Lie algebra with its Cartan subalgebra (mathfrak{h}) we shall investigate the weight space decomposition of (widehat{mathfrak{g}}) with respect to the subalgebra (widehat{mathfrak{h}}= (phi^{+(0,0,1)}otimes mathfrak{h} )oplus(mathbf{C}a) oplus(mathbf{C}d))

    Quaternifications and Extensions of Current Algebras on S3

    No full text
    Let H\mathbf{H} be the quaternion algebra. Let g\mathfrak{g} be a complex Lie algebra and let U(g)U(\mathfrak{g}) be the enveloping algebra of g\mathfrak{g}. The quaternification gH=\mathfrak{g}^{\mathbf{H}}=(HU(g),[,]gH)\,(\,\mathbf{H}\otimes U(\mathfrak{g}),\,[\quad,\quad]_{\mathfrak{g}^{\mathbf{H}}}\,) of g\mathfrak{g} is defined by the bracket [zX,wY]gH= \big[\,\mathbf{z}\otimes X\,,\,\mathbf{w}\otimes Y\,\big]_{\mathfrak{g}^{\mathbf{H}}}\,=(zw)(XY)\,(\mathbf{z}\cdot \mathbf{w})\otimes\,(XY)\,- (wz)(YX),\, (\mathbf{w}\cdot\mathbf{z})\otimes (YX)\,,\nonumber for z,wH\mathbf{z},\,\mathbf{w}\in \mathbf{H} and {the basis vectors XX and YY of U(g)U(\mathfrak{g}).} Let S3HS^3\mathbf{H} be the ( non-commutative) algebra of H\mathbf{H}-valued smooth mappings over S3S^3 and let S3gH=S3HU(g)S^3\mathfrak{g}^{\mathbf{H}}=S^3\mathbf{H}\otimes U(\mathfrak{g}). The Lie algebra structure on S3gHS^3\mathfrak{g}^{\mathbf{H}} is induced naturally from that of gH\mathfrak{g}^{\mathbf{H}}. We introduce a 2-cocycle on S3gHS^3\mathfrak{g}^{\mathbf{H}} by the aid of a tangential vector field on S3C2S^3\subset \mathbf{C}^2 and have the corresponding central extension S3gH(Ca)S^3\mathfrak{g}^{\mathbf{H}} \oplus(\mathbf{C}a). As a subalgebra of S3HS^3\mathbf{H} we have the algebra of Laurent polynomial spinors C[ϕ±]\mathbf{C}[\phi^{\pm}] spanned by a complete orthogonal system of eigen spinors {ϕ±(m,l,k)}m,l,k\{\phi^{\pm(m,l,k)}\}_{m,l,k} of the tangential Dirac operator on S3S^3. Then C[ϕ±]U(g)\mathbf{C}[\phi^{\pm}]\otimes U(\mathfrak{g}) is a Lie subalgebra of S3gHS^3\mathfrak{g}^{\mathbf{H}}. We have the central extension g^(a)=(C[ϕ±]U(g))(Ca)\widehat{\mathfrak{g}}(a)= (\,\mathbf{C}[\phi^{\pm}] \otimes U(\mathfrak{g}) \,) \oplus(\mathbf{C}a) as a Lie-subalgebra of S3gH(Ca)S^3\mathfrak{g}^{\mathbf{H}} \oplus(\mathbf{C}a). Finally we have a Lie algebra g^\widehat{\mathfrak{g}} which is obtained by adding to g^(a)\widehat{\mathfrak{g}}(a) a derivation dd which acts on g^(a)\widehat{\mathfrak{g}}(a) by the Euler vector field d0d_0. That is the C\mathbf{C}-vector space g^=(C[ϕ±]U(g))(Ca)(Cd)\widehat{\mathfrak{g}}=\left(\mathbf{C}[\phi^{\pm}]\otimes U(\mathfrak{g})\right)\oplus(\mathbf{C}a)\oplus (\mathbf{C}d) endowed with the bracket [ϕ1X1+λ1a+μ1d,ϕ2X2+λ2a+μ2d]g^= \bigl[\,\phi_1\otimes X_1+ \lambda_1 a + \mu_1d\,,\phi_2\otimes X_2 + \lambda_2 a + \mu_2d\,\,\bigr]_{\widehat{\mathfrak{g}}} \, =(ϕ1ϕ2)(X1X2)(ϕ2ϕ1)(X2X1)+μ1d0ϕ2X2 (\phi_1\phi_2)\otimes (X_1\,X_2) \, -\,(\phi_2\phi_1)\otimes (X_2X_1)+\mu_1d_0\phi_2\otimes X_2- μ2d0ϕ1X1+\mu_2d_0\phi_1\otimes X_1 +  (X1X2)c(ϕ1,ϕ2)a. (X_1\vert X_2)c(\phi_1,\phi_2)a\,. When g\mathfrak{g} is a simple Lie algebra with its Cartan subalgebra h\mathfrak{h} we shall investigate the weight space decomposition of g^\widehat{\mathfrak{g}} with respect to the subalgebra h^=(ϕ+(0,0,1)h)(Ca)(Cd)\widehat{\mathfrak{h}}= (\phi^{+(0,0,1)}\otimes \mathfrak{h} )\oplus(\mathbf{C}a) \oplus(\mathbf{C}d)
    corecore