155,119 research outputs found
Understanding evolutionary processes during past Quaternary climatic cycles: Can it be applied to the future?
Climate change affected ecological community make-up during the Quaternary which was probably both the cause of, and was caused by, evolutionary processes such as species evolution, adaptation and extinction of species and populations
Geomorphic signal of active faulting at the northern edge of Lut Block. Insights on the kinematic scenario of Central Iran
Recent works documented Neogene to Quaternary dextral strike-slip tectonics along the Kuh-e-Sarhangi and Kuh-e-Faghan intraplate strike-slip faults at the northern edge of the Lut Block of Central Iran, previously thought to be dominated by sinistral strike-slip deformation. This work focuses on the evidence of Quaternary activity of one of these fault systems, in order to provide new spatio-temporal constraints on their role in the active regional kinematic scenario. Through geomorphological and structural investigation, integrated with Optically Stimulated Luminescence (OSL) dating of three generations of alluvial fans and fluvial terraces (at ~53, ~25 and ~6 ka), this study documents (i) the topographic inheritance of the long-term (Myr) punctuated history of fault nucleation, propagation, and exhumation along the northern edge of Lut Block; (ii) the tectonic control on drainage network evolution, pediment formation, fluvial terraces, and alluvial-fan architecture; (iii) the minimum Holocene age of Quaternary dextral strike-slip faulting; and (iv) the evidence of Late Quaternary fault-related uplift localized along the different fault strands. The documented spatial and temporal constraints on the active dextral strike-slip tectonics at the northern edge of Lut Block provided new insights on the kinematic model for active faulting in Central Iran, which has been reinterpreted in an escape tectonic scenario
Quaternary glacial evolution in the Central Cantabrian Mountains (Northern Spain)
Peer reviewedPostprin
Hugues Faure, 1928–2003: The unique adventure of his life
Hugues Faure was not only one of the greatest pioneers of the study of the Quaternary and a man of outstanding personality, with the highest integrity, an uncommon strength of character, with a lot of kindness and generosity, but also a man who made his dreams, conceived in the inhospitable solitudes of the Sahara, come true. He was very young when he chose his way: barely 10 years old and his passion for geology already filled his life. It was in Africa, a continent he discovered at his earliest years as a field-geologist, and deeply loved, that he nursed and matured many of his most stimulating ideas on Quaternary environmental change. It was in the desert that he built up his exceptional personality and found his truth, which finally allowed him to accomplish his destiny. Hugues Faure was born in Paris, on the 11th March 1928, the son of a jeweller. The comfortable circumstances of the family were darkened by his father's death when Hugues was only 3 years old. As a consequence of this sad event, Hugues used to spend in England most of his school holidays far from his family. Then during World War 2, he lived the exodus on the roads of France, cycling under the bombs, with his dog in his basket. He was 12 years old, and it was the end of his youth. His passion for earth sciences had began before the age of ten, when he started collecting flint and fossils from the chalk of the Paris Basin, and decided to stop playing piano, so as to devote himself to Geology. Hugues graduated in Mathematics from Lycée Jacques-Decour in 1948, and in Sciences from the Faculté des Sciences de Paris Sorbonne in 1949. On the same year he enrolled as a geologist of the “France of Overseas”, then as a hydrogeologist at the French Geological Survey (BRGM) (1949–1963), so as to work in Africa
Evidence of Quaternary tectonics along Río Grande valley, southern Malargüe fold and thrust belt, Mendoza, Argentina
The Malargüe fold and thrust belt is developed in the Argentinian Andes between 34° and 37° S, through the tectonic inversion of Upper Triassic and Lower Jurassic depocenters of the Neuquén Basin, with an uplift history since the Cretaceous. Evidence of Quaternary deformation has been described in the northern part of it (34–34.5°S), potentially coeval to neotectonic activity along the eastern edge of San Rafael block. To the south, compressional and extensional structures active during the Quaternary were found in the Dorso de los Chihuidos along the Agrio fold and thrust belt front (37.5–38°S). Contrastingly, the southern segment of the Malargüe fold and thrust belt between these two areas with described neotectonic activity is partially covered by Quaternary products of the Payún Matrú volcanic field, that may hide evidence of recent deformation. In this 300 km gap of neotectonic information, the landscape imprint of two individual structures aligned in the mountain front through the Río Grande valley was analyzed. New evidence of neotectonic deformation were recognized, in particular over the western slope of the Cara Cura range, expressed by faulting and folding of Quaternary deposits and lava flows. An 40Ar/39Ar age from a deformed lava flow at the flanks of an anticline in the foothills of the Cara Cura range may suggest at least an upper Pleistocene compressional tectonic activity. Longitudinal river profile analysis revealed anomalies that show some correlation with the neotectonic structures described, especially knickpoints and concavity index changes. Meanwhile normalized steepness index values showed a moderate response to recent deformation. A proposed schematic geomorphic evolution for this segment of Río Grande river is discussed to put the neotectonic activity into the context of landscape formation. All together this evidence supports the idea of an active front through the Río Grande valley during the Quaternary, coetaneous to an active broken foreland to the east in the southern Central Andes.Fil: Colavitto, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Sagripanti, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Fennell, Lucas Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Folguera Telichevsky, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Costa, Carlos. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Geología; Argentin
Spatio-temporal evolution of intraplate strike-slip faulting: the Neogene-Quaternary Kuh-e-Faghan Fault, Central Iran
Central Iran provides an ideal region to study the long-term morphotectonic response to the nucleation and propagation of intraplate faulting. In this study, a multidisciplinary approach that integrates structural and stratigraphic field investigations with apatite (U+Th)/He (AHe) thermochronometry is used to reconstruct the spatio-temporal evolution of the Kuh-e-Faghan Fault (KFF) in northeastern Central Iran. The KFF is a narrow, ca. 80 km long, deformation zone that consists of three main broadly left stepping, E-W trending, dextral fault strands that cut through the Mesozoic-Paleozoic substratum and the Neogene-Quaternary sedimentary cover. The AHe thermochronometry results indicate that the intra-fault blocks along the KFF experienced two major episodes of fault-related exhumation at ~18 Ma and ~4 Ma. The ~18 Ma faulting/exhumation episode is chiefly recorded by the structure and depositional architecture of the Neogene deposits along the KFF. A source-to-sink scenario can be reconstructed for this time frame, where topographic growth caused the synchronous erosion/exhumation of the pre-Neogene units and deposition of the eroded material in the surrounding fault-bounded continental depocenters. Successively, the KFF gradually entered a period of relative tectonic quiescence and, probably, of regional subsidence during which a thick pile of fine-grained onlapping sediments were deposited. This may have caused resetting of the He ages of apatite in the pre-Neogene and the basal Neogene successions. The ~4 Ma faulting episode caused the final exhumation of the fault system, resulting in the current fault zone and topography. The two fault-related exhumation episodes fit with the regional early Miocene collision-enhanced uplift/exhumation, and the late Miocene–early Pliocene widespread tectonic reorganization of the Iranian plateau. The reconstructed long term, spatially and temporally punctuated fault system evolution in intraplate Central Iran during Neogene-Quaternary times may reflect states of far-field stress changes at the collisional boundaries
Tectonic significance of changes in post-subduction Pliocene-Quaternary magmatism in the south east part of the Carpathian-Pannonian Region
The south-eastern part of the Carpathian–Pannonian region records the cessation of convergence between the European platform/Moesia and the Tisza–Dacia microplate. Plio-Quaternary magmatic activity in this area, in close proximity to the ‘Vrancea zone’, shows a shift from normal calc-alkaline to much more diverse compositions (adakite-like calc-alkaline, K-alkalic, mafic Na-alkalic and ultrapotassic), suggesting a significant change in geodynamic processes at approximately 3 Ma. We review the tectonic setting, timing, petrology and geochemistry of the post-collisional volcanism to constrain the role of orogenic building processes such as subduction or collision on melt production and migration. The calc-alkaline volcanism (5.3–3.9 Ma) marks the end of normal subduction-related magmatism along the post-collisional Călimani–Gurghiu–Harghita volcanic chain in front of the European convergent plate margin. At ca. 3 Ma in South Harghita magma compositions changed to adakite-like calc-alkaline and continued until recent times (< 0.03 Ma) interrupted at 1.6–1.2 Ma by generation of Na and K-alkalic magmas, signifying changes in the source and melting mechanism. We attribute the changes in magma composition in front of the Moesian platform to two main geodynamic events: (1) slab-pull and steepening with opening of a tear window (adakite-like calc-alkaline magmas) and (2) renewed contraction associated with deep mantle processes such as slab steepening during post-collisional times (Na and K-alkalic magmas). Contemporaneous post-collisional volcanism at the eastern edge of the Pannonian Basin at 2.6–1.3 Ma was dominated by Na-alkalic and ultrapotassic magmas, suggesting a close relationship with thermal asthenospheric doming and strain partitioning related to the Adriatic indentation. Similar timing, magma chamber processes and volume for K-alkalic (shoshonitic) magmas in the South Apuseni Mountains (1.6 Ma) and South Harghita area at a distance of ca. 200 km imply a regional connection with the inversion tectonics
Tertiary-Quaternary subduction processes and related magmatism in the Alpine-Mediterranean region
During Tertiary to Quaternary times, convergence between Eurasia and Africa resulted in a variety of collisional orogens and different styles of subduction in the Alpine-Mediterranean region. Characteristic features of this area include arcuate orogenic belts and extensional basins, both of which can be explained by roll-back of subducted slabs and retreating subduction zones. After cessation of active subduction, slab detachment and post-collisional gravitational collapse of the overthickened lithosphere took place. This complex tectonic history was accompanied by the generation of a wide variety of magmas. Most of these magmas (e.g. low-K tholeiitic, calc-alkaline, shoshonitic and ultrapotassic types) have trace element and isotopic fingerprints that are commonly interpreted to reflect enrichment of their source regions by subduction-related fluids. Thus, they can be considered as ‘subduction-related’ magmas irrespective of their geodynamic relationships. Intraplate alkali basalts are also found in the region generally postdated the ‘subduction-related’ volcanism. These mantle-derived magmas have not been, or only slightly, influenced by subduction-related enrichment.
This paper summarises the geodynamic setting of the Tertiary-Quaternary “subduction-related” magmatism in the different segments of the Alpine-Mediterranean region (Betic-Alboran-Rif province, Central Mediterranean, the Alps, Carpathian-Pannonian region, Dinarides and Hellenides, Aegean and Western Anatolia), and discusses the main characteristics and compositional variation of the magmatic rocks. Radiogenic and stable isotope data indicate the importance of continental crustal material in the genesis of these magmas. Interaction with crustal material probably occurred both in the upper mantle during subduction (‘source contamination’) and in the continental crust during ascent of mantle-derived magmas (either by mixing with crustal melts or by crustal contamination). The 87Sr/86Sr and 206Pb/204Pb isotope ratios indicate that an enriched mantle component, akin to the source of intraplate alkali mafic magmas along the Alpine foreland, played a key role in the petrogenesis of the ‘subduction-related’ magmas of the Alpine-Mediterranean region. This enriched mantle component could be related to mantle plumes or to long-term pollution (deflection of the central Atlantic plume and recycling of crustal material during subduction) of the shallow mantle beneath Europe since the late Mesozoic. In the first case, subduction processes could have had an influence in generating asthenospheric flow by deflecting nearby mantle plumes due to slab roll-back or slab break-off. In the second case, the variation in the chemical composition of the volcanic rocks in the Mediterranean region can be explained by “statistical sampling” of the strongly inhomogeneous mantle followed by variable degrees of crustal contamination
Effects of Pleistocene climate changes on species ranges and evolutionary processes in the Neotropical Atlantic Forest
The effects of global glaciations on the distribution of organisms is an essential element of many diversification models. However, the empirical evidence supporting this idea is mixed, in particular with respect to explaining tropical forest evolution. In the present study, we evaluated the impacts of range shifts associated with Pleistocene global glacial cycles on the evolution of tropical forests. In particular, we tested the predictions: (1) that population genetic structure increases with fragmentation variation between the present and the Last Glacial Maximum (LGM) and also (2) with geographical range instability; and (3) that genetic diversity increases with range stability and (4) decreases with fragmentation variation between periods. To address our predictions, we studied population genetic structures and modelled present and past distributions of 15 Atlantic Forest (AF) endemic birds. Afterwards, we evaluated the relationship of population genetic parameters with metrics of species range shifts between the present and the LGM. We found that geographical ranges of AF birds changed in concert with Pleistocene glacial cycles but, unexpectedly, our findings suggest the novel idea that ranges during glacial maxima were slightly larger on average, as well as equally fragmented and displaced from the interglacial ranges. Our findings suggest that range shifts over the late Pleistocene impacted on the diversification of forest organisms, although they did not show that those range shifts had a strong effect. We found that a combination of fragmentation variation across time, small current range size, and range stability increased population genetic structure. However, neither fragmentation, nor range stability affected genetic diversity. Our study showed that evolutionary responses to range shifts across AF birds have a high variance, which could explain the mixed support given by single-species studies to the action of Pleistocene range shifts on population evolution.Fil: Cabanne, Gustavo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Calderón, Pablo Luciano Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Trujillo Arias, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Flores, Pamela. Universidad Nacional de General Sarmiento; ArgentinaFil: Pessoa, Rodrigo. Universidade Estadual de Montes Claros; BrasilFil: d'Horta, Fernando M.. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Miyaki, Cristina Y.. Universidade de Sao Paulo; Brasi
A Framework for Quantifying the Degeneracies of Exoplanet Interior Compositions
Several transiting super-Earths are expected to be discovered in the coming
few years. While tools to model the interior structure of transiting planets
exist, inferences about the composition are fraught with ambiguities. We
present a framework to quantify how much we can robustly infer about
super-Earth and Neptune-size exoplanet interiors from radius and mass
measurements. We introduce quaternary diagrams to illustrate the range of
possible interior compositions for planets with four layers (iron core,
silicate mantles, water layers, and H/He envelopes). We apply our model to
CoRoT-7b, GJ 436b, and HAT-P-11b. Interpretation of planets with H/He envelopes
is limited by the model uncertainty in the interior temperature, while for
CoRoT-7b observational uncertainties dominate. We further find that our planet
interior model sharpens the observational constraints on CoRoT-7b's mass and
radius, assuming the planet does not contain significant amounts of water or
gas. We show that the strength of the limits that can be placed on a
super-Earth's composition depends on the planet's density; for similar
observational uncertainties, high-density super-Mercuries allow the tightest
composition constraints. Finally, we describe how techniques from Bayesian
statistics can be used to take into account in a formal way the combined
contributions of both theoretical and observational uncertainties to
ambiguities in a planet's interior composition. On the whole, with only a mass
and radius measurement an exact interior composition cannot be inferred for an
exoplanet because the problem is highly underconstrained. Detailed quantitative
ranges of plausible compositions, however, can be found.Comment: 20 pages, 10 figures, published in Ap
- …
