423 research outputs found

    Quantum-Chemical Insights from Interpretable Atomistic Neural Networks

    Get PDF
    With the rise of deep neural networks for quantum chemistry applications, there is a pressing need for architectures that, beyond delivering accurate predictions of chemical properties, are readily interpretable by researchers. Here, we describe interpretation techniques for atomistic neural networks on the example of Behler–Parrinello networks as well as the end-to-end model SchNet. Both models obtain predictions of chemical properties by aggregating atom-wise contributions. These latent variables can serve as local explanations of a prediction and are obtained during training without additional cost. Due to their correspondence to well-known chemical concepts such as atomic energies and partial charges, these atom-wise explanations enable insights not only about the model but more importantly about the underlying quantum-chemical regularities. We generalize from atomistic explanations to 3d space, thus obtaining spatially resolved visualizations which further improve interpretability. Finally, we analyze learned embeddings of chemical elements that exhibit a partial ordering that resembles the order of the periodic table. As the examined neural networks show excellent agreement with chemical knowledge, the presented techniques open up new venues for data-driven research in chemistry, physics and materials science.EC/H2020/792572/EU/Machine Learning for Catalytic Carbon Dioxide Activation/MachineCatBMBF, 01IS14013A, Verbundprojekt: BBDC - Berliner Kompetenzzentrum für Big DataBMBF, 01IS18037A, Verbundprojekt BIFOLD-BZML: Berlin Institute for the Foundations of Learning and DataEC/H2020/725291/EU/Beyond Static Molecules: Modeling Quantum Fluctuations in Complex Molecular Environments/BeStM

    SchNet - a deep learning architecture for molecules and materials

    Get PDF
    Deep learning has led to a paradigm shift in artificial intelligence, including web, text and image search, speech recognition, as well as bioinformatics, with growing impact in chemical physics. Machine learning in general and deep learning in particular is ideally suited for representing quantum-mechanical interactions, enabling to model nonlinear potential-energy surfaces or enhancing the exploration of chemical compound space. Here we present the deep learning architecture SchNet that is specifically designed to model atomistic systems by making use of continuous-filter convolutional layers. We demonstrate the capabilities of SchNet by accurately predicting a range of properties across chemical space for \emph{molecules and materials} where our model learns chemically plausible embeddings of atom types across the periodic table. Finally, we employ SchNet to predict potential-energy surfaces and energy-conserving force fields for molecular dynamics simulations of small molecules and perform an exemplary study of the quantum-mechanical properties of C20_{20}-fullerene that would have been infeasible with regular ab initio molecular dynamics

    Band gap prediction for large organic crystal structures with machine learning

    Full text link
    Machine-learning models are capable of capturing the structure-property relationship from a dataset of computationally demanding ab initio calculations. Over the past two years, the Organic Materials Database (OMDB) has hosted a growing number of calculated electronic properties of previously synthesized organic crystal structures. The complexity of the organic crystals contained within the OMDB, which have on average 82 atoms per unit cell, makes this database a challenging platform for machine learning applications. In this paper, the focus is on predicting the band gap which represents one of the basic properties of a crystalline materials. With this aim, a consistent dataset of 12 500 crystal structures and their corresponding DFT band gap are released, freely available for download at https://omdb.mathub.io/dataset. An ensemble of two state-of-the-art models reach a mean absolute error (MAE) of 0.388 eV, which corresponds to a percentage error of 13% for an average band gap of 3.05 eV. Finally, the trained models are employed to predict the band gap for 260 092 materials contained within the Crystallography Open Database (COD) and made available online so that the predictions can be obtained for any arbitrary crystal structure uploaded by a user.Comment: 10 pages, 6 figure

    Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning

    No full text
    Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry and materials science, but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning can reduce these costs, sometimes by orders of magnitude, by interpolating between reference simulations. This requires representations that describe any molecule or material and support interpolation. We review, discuss and benchmark state-of-the-art representations and relations between them, including smooth overlap of atomic positions, many-body tensor representation, and symmetry functions. For this, we use a unified mathematical framework based on many-body functions, group averaging and tensor products, and compare energy predictions for organic molecules, binary alloys and Al-Ga-In sesquioxides in numerical experiments controlled for data distribution, regression method and hyper-parameter optimization

    Atomistic Line Graph Neural Network for Improved Materials Property Predictions

    Full text link
    Graph neural networks (GNN) have been shown to provide substantial performance improvements for representing and modeling atomistic materials compared with descriptor-based machine-learning models. While most existing GNN models for atomistic predictions are based on atomic distance information, they do not explicitly incorporate bond angles, which are critical for distinguishing many atomic structures. Furthermore, many material properties are known to be sensitive to slight changes in bond angles. We present an Atomistic Line Graph Neural Network (ALIGNN), a GNN architecture that performs message passing on both the interatomic bond graph and its line graph corresponding to bond angles. We demonstrate that angle information can be explicitly and efficiently included, leading to improved performance on multiple atomistic prediction tasks. We use ALIGNN models for predicting 52 solid-state and molecular properties available in the JARVIS-DFT, Materials project, and QM9 databases. ALIGNN can outperform some previously reported GNN models on atomistic prediction tasks by up to 85 % in accuracy with better or comparable model training speed
    • …
    corecore