444 research outputs found

    LOCC distinguishability of unilaterally transformable quantum states

    Full text link
    We consider the question of perfect local distinguishability of mutually orthogonal bipartite quantum states, with the property that every state can be specified by a unitary operator acting on the local Hilbert space of Bob. We show that if the states can be exactly discriminated by one-way LOCC where Alice goes first, then the unitary operators can also be perfectly distinguished by an orthogonal measurement on Bob's Hilbert space. We give examples of sets of N<=d maximally entangled states in d⊗dd \otimes d for d=4,5,6 that are not perfectly distinguishable by one-way LOCC. Interestingly for d=5,6 our examples consist of four and five states respectively. We conjecture that these states cannot be perfectly discriminated by two-way LOCC.Comment: Revised version, new proofs added; to appear in New Journal of Physic

    Tight bounds on the distinguishability of quantum states under separable measurements

    Full text link
    One of the many interesting features of quantum nonlocality is that the states of a multipartite quantum system cannot always be distinguished as well by local measurements as they can when all quantum measurements are allowed. In this work, we characterize the distinguishability of sets of multipartite quantum states when restricted to separable measurements -- those which contain the class of local measurements but nevertheless are free of entanglement between the component systems. We consider two quantities: The separable fidelity -- a truly quantum quantity -- which measures how well we can "clone" the input state, and the classical probability of success, which simply gives the optimal probability of identifying the state correctly. We obtain lower and upper bounds on the separable fidelity and give several examples in the bipartite and multipartite settings where these bounds are optimal. Moreover the optimal values in these cases can be attained by local measurements. We further show that for distinguishing orthogonal states under separable measurements, a strategy that maximizes the probability of success is also optimal for separable fidelity. We point out that the equality of fidelity and success probability does not depend on an using optimal strategy, only on the orthogonality of the states. To illustrate this, we present an example where two sets (one consisting of orthogonal states, and the other non-orthogonal states) are shown to have the same separable fidelity even though the success probabilities are different.Comment: 19 pages; published versio

    Relativistic quantum coin tossing

    Get PDF
    A relativistic quantum information exchange protocol is proposed allowing two distant users to realize ``coin tossing'' procedure. The protocol is based on the point that in relativistic quantum theory reliable distinguishing between the two orthogonal states generally requires a finite time depending on the structure of these states.Comment: 6 pages, no figure

    Limitations on Quantum Key Repeaters

    Full text link
    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution (QKD). Due to noise in the communication line, QKD is in practice limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device which performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for QKD raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for QKD but unsuitable for the most general quantum key repeater protocol.Comment: 11+38 pages, 4 figures, Statements for exact p-bits weakened as non-locking bound on measured relative entropy distance contained an erro

    Strong and uniform convergence in the teleportation simulation of bosonic Gaussian channels

    Get PDF
    In the literature on the continuous-variable bosonic teleportation protocol due to [Braunstein and Kimble, Phys. Rev. Lett., 80(4):869, 1998], it is often loosely stated that this protocol converges to a perfect teleportation of an input state in the limit of ideal squeezing and ideal detection, but the exact form of this convergence is typically not clarified. In this paper, I explicitly clarify that the convergence is in the strong sense, and not the uniform sense, and furthermore, that the convergence occurs for any input state to the protocol, including the infinite-energy Basel states defined and discussed here. I also prove, in contrast to the above result, that the teleportation simulations of pure-loss, thermal, pure-amplifier, amplifier, and additive-noise channels converge both strongly and uniformly to the original channels, in the limit of ideal squeezing and detection for the simulations. For these channels, I give explicit uniform bounds on the accuracy of their teleportation simulations. I then extend these uniform convergence results to particular multi-mode bosonic Gaussian channels. These convergence statements have important implications for mathematical proofs that make use of the teleportation simulation of bosonic Gaussian channels, some of which have to do with bounding their non-asymptotic secret-key-agreement capacities. As a byproduct of the discussion given here, I confirm the correctness of the proof of such bounds from my joint work with Berta and Tomamichel from [Wilde, Tomamichel, Berta, IEEE Trans. Inf. Theory 63(3):1792, March 2017]. Furthermore, I show that it is not necessary to invoke the energy-constrained diamond distance in order to confirm the correctness of this proof.Comment: 19 pages, 3 figure
    • …
    corecore