25,377 research outputs found

    A New method for Analysis of Biomolecules Using the BSM-SG Atomic Models

    Get PDF
    Biomolecules and particularly proteins and DNA exhibit some mysterious features that cannot find satisfactory explanation by quantum mechanical modes of atoms. One of them, known as a Levinthal’s paradox, is the ability to preserve their complex three-dimensional structure in appropriate environments. Another one is that they possess some unknown energy mechanism. The Basic Structures of Matter Supergravitation Unified Theory (BSM-SG) allows uncovering the real physical structures of the elementary particles and their spatial arrangement in atomic nuclei. The resulting physical models of the atoms are characterized by the same interaction energies as the quantum mechanical models, while the structure of the elementary particles influence their spatial arrangement in the nuclei. The resulting atomic models with fully identifiable parameters and angular positions of the quantum orbits permit studying the physical conditions behind the structural and bonding restrictions of the atoms connected in molecules. A new method for a theoretical analysis of biomolecules is proposed. The analysis of a DNA molecule leads to formulation of hypotheses about the energy storage mechanism in DNA and its role in the cell cycle synchronization. This permits shedding a light on the DNA feature known as a C-value paradox. The analysis of a tRNA molecule leads to formulation of a hypothesis about a binary decoding mechanism behind the 20 flavors of the complex aminoacyle-tRNA synthetases - tRNA, known as a paradox

    Erwin Schroedinger, Francis Crick and epigenetic stability

    Get PDF
    Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that lead Schroedinger to promote the idea of molecular code-script for explanation of stability of biological order.Comment: New and improved version of the essay, now published in the online journal 'Biology Direct'. Contains more expanded discussion on entanglement. 18 pages, 2 figures. The file includes open reviews by E.Koonin, V.Vedral and E.Karsent

    Quantum Biology

    Get PDF
    A critical assessment of the recent developments of molecular biology is presented. The thesis that they do not lead to a conceptual understanding of life and biological systems is defended. Maturana and Varela's concept of autopoiesis is briefly sketched and its logical circularity avoided by postulating the existence of underlying {\it living processes}, entailing amplification from the microscopic to the macroscopic scale, with increasing complexity in the passage from one scale to the other. Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces, is criticized. It is suggested that the correct interpretation of quantum dispersion forces (van der Waals, hydrogen bonding, and so on) as quantum coherence effects hints at the necessity of including long-ranged forces (or mechanisms for them) in condensed matter theories of biological processes. Some quantum effects in biology are reviewed and quantum mechanics is acknowledged as conceptually important to biology since without it most (if not all) of the biological structures and signalling processes would not even exist. Moreover, it is suggested that long-range quantum coherent dynamics, including electron polarization, may be invoked to explain signal amplification process in biological systems in general

    Proton tunneling in hydrogen bonds and its implications in an induced-fit model of enzyme catalysis

    Full text link
    The role of proton tunneling in biological catalysis is investigated here within the frameworks of quantum information theory and thermodynamics. We consider the quantum correlations generated through two hydrogen bonds between a substrate and a prototypical enzyme that first catalyzes the tautomerization of the substrate to move on to a subsequent catalysis, and discuss how the enzyme can derive its catalytic potency from these correlations. In particular, we show that classical changes induced in the binding site of the enzyme spreads the quantum correlations among all of the four hydrogen-bonded atoms thanks to the directionality of hydrogen bonds. If the enzyme rapidly returns to its initial state after the binding stage, the substrate ends in a new transition state corresponding to a quantum superposition. Open quantum system dynamics can then naturally drive the reaction in the forward direction from the major tautomeric form to the minor tautomeric form without needing any additional catalytic activity. We find that in this scenario the enzyme lowers the activation energy so much that there is no energy barrier left in the tautomerization, even if the quantum correlations quickly decay.Comment: 15 pages, 4 figures. Authors postprint versio
    • …
    corecore