65,288 research outputs found

    Sum-of-squares proofs and the quest toward optimal algorithms

    Full text link
    In order to obtain the best-known guarantees, algorithms are traditionally tailored to the particular problem we want to solve. Two recent developments, the Unique Games Conjecture (UGC) and the Sum-of-Squares (SOS) method, surprisingly suggest that this tailoring is not necessary and that a single efficient algorithm could achieve best possible guarantees for a wide range of different problems. The Unique Games Conjecture (UGC) is a tantalizing conjecture in computational complexity, which, if true, will shed light on the complexity of a great many problems. In particular this conjecture predicts that a single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems. The Sum-of-Squares (SOS) method is a general approach for solving systems of polynomial constraints. This approach is studied in several scientific disciplines, including real algebraic geometry, proof complexity, control theory, and mathematical programming, and has found applications in fields as diverse as quantum information theory, formal verification, game theory and many others. We survey some connections that were recently uncovered between the Unique Games Conjecture and the Sum-of-Squares method. In particular, we discuss new tools to rigorously bound the running time of the SOS method for obtaining approximate solutions to hard optimization problems, and how these tools give the potential for the sum-of-squares method to provide new guarantees for many problems of interest, and possibly to even refute the UGC.Comment: Survey. To appear in proceedings of ICM 201

    Advantages of Unfair Quantum Ground-State Sampling

    Get PDF
    The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field by Kadowaki and Nishimori close to two decades ago. Recent technological breakthroughs in the field, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. Here, we examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating ideal stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a commercially available quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than classical thermal samplers. We demonstrate that i) quantum annealers in general sample the ground-state manifolds of spin glasses very differently than thermal optimizers, ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution over ground-states, and iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.Comment: 13 pages, 11 figure

    Single-Step Quantum Search Using Problem Structure

    Get PDF
    The structure of satisfiability problems is used to improve search algorithms for quantum computers and reduce their required coherence times by using only a single coherent evaluation of problem properties. The structure of random k-SAT allows determining the asymptotic average behavior of these algorithms, showing they improve on quantum algorithms, such as amplitude amplification, that ignore detailed problem structure but remain exponential for hard problem instances. Compared to good classical methods, the algorithm performs better, on average, for weakly and highly constrained problems but worse for hard cases. The analytic techniques introduced here also apply to other quantum algorithms, supplementing the limited evaluation possible with classical simulations and showing how quantum computing can use ensemble properties of NP search problems.Comment: 39 pages, 12 figures. Revision describes further improvement with multiple steps (section 7). See also http://www.parc.xerox.com/dynamics/www/quantum.htm
    • …
    corecore