2,461 research outputs found

    SEA++: Multi-Graph-based High-Order Sensor Alignment for Multivariate Time-Series Unsupervised Domain Adaptation

    Full text link
    Unsupervised Domain Adaptation (UDA) methods have been successful in reducing label dependency by minimizing the domain discrepancy between a labeled source domain and an unlabeled target domain. However, these methods face challenges when dealing with Multivariate Time-Series (MTS) data. MTS data typically consist of multiple sensors, each with its own unique distribution. This characteristic makes it hard to adapt existing UDA methods, which mainly focus on aligning global features while overlooking the distribution discrepancies at the sensor level, to reduce domain discrepancies for MTS data. To address this issue, a practical domain adaptation scenario is formulated as Multivariate Time-Series Unsupervised Domain Adaptation (MTS-UDA). In this paper, we propose SEnsor Alignment (SEA) for MTS-UDA, aiming to reduce domain discrepancy at both the local and global sensor levels. At the local sensor level, we design endo-feature alignment, which aligns sensor features and their correlations across domains. To reduce domain discrepancy at the global sensor level, we design exo-feature alignment that enforces restrictions on global sensor features. We further extend SEA to SEA++ by enhancing the endo-feature alignment. Particularly, we incorporate multi-graph-based high-order alignment for both sensor features and their correlations. Extensive empirical results have demonstrated the state-of-the-art performance of our SEA and SEA++ on public MTS datasets for MTS-UDA

    Relating Events and Frames Based on Self-Supervised Learning and Uncorrelated Conditioning for Unsupervised Domain Adaptation

    Full text link
    Event-based cameras provide accurate and high temporal resolution measurements for performing computer vision tasks in challenging scenarios, such as high-dynamic range environments and fast-motion maneuvers. Despite their advantages, utilizing deep learning for event-based vision encounters a significant obstacle due to the scarcity of annotated data caused by the relatively recent emergence of event-based cameras. To overcome this limitation, leveraging the knowledge available from annotated data obtained with conventional frame-based cameras presents an effective solution based on unsupervised domain adaptation. We propose a new algorithm tailored for adapting a deep neural network trained on annotated frame-based data to generalize well on event-based unannotated data. Our approach incorporates uncorrelated conditioning and self-supervised learning in an adversarial learning scheme to close the gap between the two source and target domains. By applying self-supervised learning, the algorithm learns to align the representations of event-based data with those from frame-based camera data, thereby facilitating knowledge transfer.Furthermore, the inclusion of uncorrelated conditioning ensures that the adapted model effectively distinguishes between event-based and conventional data, enhancing its ability to classify event-based images accurately.Through empirical experimentation and evaluation, we demonstrate that our algorithm surpasses existing approaches designed for the same purpose using two benchmarks. The superior performance of our solution is attributed to its ability to effectively utilize annotated data from frame-based cameras and transfer the acquired knowledge to the event-based vision domain

    Deep Feature Learning and Adaptation for Computer Vision

    Get PDF
    We are living in times when a revolution of deep learning is taking place. In general, deep learning models have a backbone that extracts features from the input data followed by task-specific layers, e.g. for classification. This dissertation proposes various deep feature extraction and adaptation methods to improve task-specific learning, such as visual re-identification, tracking, and domain adaptation. The vehicle re-identification (VRID) task requires identifying a given vehicle among a set of vehicles under variations in viewpoint, illumination, partial occlusion, and background clutter. We propose a novel local graph aggregation module for feature extraction to improve VRID performance. We also utilize a class-balanced loss to compensate for the unbalanced class distribution in the training dataset. Overall, our framework achieves state-of-the-art (SOTA) performance in multiple VRID benchmarks. We further extend our VRID method for visual object tracking under occlusion conditions. We motivate visual object tracking from aerial platforms by conducting a benchmarking of tracking methods on aerial datasets. Our study reveals that the current techniques have limited capabilities to re-identify objects when fully occluded or out of view. The Siamese network based trackers perform well compared to others in overall tracking performance. We utilize our VRID work in visual object tracking and propose Siam-ReID, a novel tracking method using a Siamese network and VRID technique. In another approach, we propose SiamGauss, a novel Siamese network with a Gaussian Head for improved confuser suppression and real time performance. Our approach achieves SOTA performance on aerial visual object tracking datasets. A related area of research is developing deep learning based domain adaptation techniques. We propose continual unsupervised domain adaptation, a novel paradigm for domain adaptation in data constrained environments. We show that existing works fail to generalize when the target domain data are acquired in small batches. We propose to use a buffer to store samples that are previously seen by the network and a novel loss function to improve the performance of continual domain adaptation. We further extend our continual unsupervised domain adaptation research for gradually varying domains. Our method outperforms several SOTA methods even though they have the entire domain data available during adaptation

    Concept Drift Detection in Data Stream Mining: The Review of Contemporary Literature

    Get PDF
    Mining process such as classification, clustering of progressive or dynamic data is a critical objective of the information retrieval and knowledge discovery; in particular, it is more sensitive in data stream mining models due to the possibility of significant change in the type and dimensionality of the data over a period. The influence of these changes over the mining process termed as concept drift. The concept drift that depict often in streaming data causes unbalanced performance of the mining models adapted. Hence, it is obvious to boost the mining models to predict and analyse the concept drift to achieve the performance at par best. The contemporary literature evinced significant contributions to handle the concept drift, which fall in to supervised, unsupervised learning, and statistical assessment approaches. This manuscript contributes the detailed review of the contemporary concept-drift detection models depicted in recent literature. The contribution of the manuscript includes the nomenclature of the concept drift models and their impact of imbalanced data tuples
    • …
    corecore