87 research outputs found

    Experimental quantum computing without entanglement

    Get PDF
    Entanglement is widely believed to lie at the heart of the advantages offered by a quantum computer. This belief is supported by the discovery that a noiseless (pure) state quantum computer must generate a large amount of entanglement in order to offer any speed up over a classical computer. However, deterministic quantum computation with one pure qubit (DQC1), which employs noisy (mixed) states, is an efficient model that generates at most a marginal amount of entanglement. Although this model cannot implement any arbitrary algorithm it can efficiently solve a range of problems of significant importance to the scientific community. Here we experimentally implement a first-order case of a key DQC1 algorithm and explicitly characterise the non-classical correlations generated. Our results show that while there is no entanglement the algorithm does give rise to other non-classical correlations, which we quantify using the quantum discord - a stronger measure of non-classical correlations that includes entanglement as a subset. Our results suggest that discord could replace entanglement as a necessary resource for a quantum computational speed-up. Furthermore, DQC1 is far less resource intensive than universal quantum computing and our implementation in a scalable architecture highlights the model as a practical short-term goal.Comment: 5 pages, 4 figure

    Quantum Computing Without Entanglement

    Get PDF
    It is generally believed that entanglement is essential for quantum computing. We present here a few simple examples in which quantum computing without entanglement is better than anything classically achievable, in terms of the reliability of the outcome after a xed number of oracle calls. Using a separable (that is, unentangled) n-qubit state, we show that the Deutsch-Jozsa problem and the Simon problem can be solved more reliably by a quantum computer than by the best possible classical algorithm, even probabilistic. We conclude that: (a) entanglement is not essential for quantum computing; and (b) some advantage of quantum algorithms over classical algorithms persists even when the quantum state contains an arbitrarily small amount of information|that is, even when the state is arbitrarily close to being totally mixed.Comment: 18 pages. Presented at FoCM'02 (Aug 2002, see http://www.cs.technion.ac.il/~danken/pub/QCnoEnt.pdf), QIP'03 (Dec 2002, see http://www.msri.org/publications/ln/msri/2002/qip/brassard/1/), Qubit'03 (Apr 2003, see http://www.cs.technion.ac.il/~talmo/Qubitconf/QUBIT-2003/program/

    A new criteria for zero quantum discord

    Full text link
    We propose a new criterion to judge zero quantum discord for arbitrary bipartite states. A bipartite quantum state has zero quantum discord if and only if all blocks of its density matrix are normal matrices and commute with each other. Given a bipartite state with zero quantum discord, how to find out the set of local projectors, which do not disturb the whole state after being imposed on one subsystem, is also presented. A class of two-qubit X-state is used to test the criterion, and an experimental scheme is proposed to realize it. Consequently, we prove that the positive operator-valued measurement can not extinguish the quantum correlation of a bipartite state with nonzero quantum discord.Comment: 10 pages, 1 figur

    Quantum Advantage without Entanglement

    Full text link
    We study the advantage of pure-state quantum computation without entanglement over classical computation. For the Deutsch-Jozsa algorithm we present the maximal subproblem that can be solved without entanglement, and show that the algorithm still has an advantage over the classical ones. We further show that this subproblem is of greater significance, by proving that it contains all the Boolean functions whose quantum phase-oracle is non-entangling. For Simon's and Grover's algorithms we provide simple proofs that no non-trivial subproblems can be solved by these algorithms without entanglement.Comment: 10 page

    An easy measure of quantum correlation

    Get PDF
    • …
    corecore