98 research outputs found

    Quantum broadcast channels

    Full text link
    We consider quantum channels with one sender and two receivers, used in several different ways for the simultaneous transmission of independent messages. We begin by extending the technique of superposition coding to quantum channels with a classical input to give a general achievable region. We also give outer bounds to the capacity regions for various special cases from the classical literature and prove that superposition coding is optimal for a class of channels. We then consider extensions of superposition coding for channels with a quantum input, where some of the messages transmitted are quantum instead of classical, in the sense that the parties establish bipartite or tripartite GHZ entanglement. We conclude by using state merging to give achievable rates for establishing bipartite entanglement between different pairs of parties with the assistance of free classical communication.Comment: 15 pages; IEEE Trans. Inform. Theory, vol. 57, no. 10, October 201

    A father protocol for quantum broadcast channels

    Full text link
    A new protocol for quantum broadcast channels based on the fully quantum Slepian-Wolf protocol is presented. The protocol yields an achievable rate region for entanglement-assisted transmission of quantum information through a quantum broadcast channel that can be considered the quantum analogue of Marton's region for classical broadcast channels. The protocol can be adapted to yield achievable rate regions for unassisted quantum communication and for entanglement-assisted classical communication; in the case of unassisted transmission, the region we obtain has no independent constraint on the sum rate, only on the individual transmission rates. Regularized versions of all three rate regions are provably optimal.Comment: Typo in statement of Theorem 4 fixe

    Hadamard quantum broadcast channels

    Get PDF
    We consider three different communication tasks for quantum broadcast channels, and we determine the capacity region of a Hadamard broadcast channel for these various tasks. We define a Hadamard broadcast channel to be such that the channel from the sender to one of the receivers is entanglement-breaking and the channel from the sender to the other receiver is complementary to this one. As such, this channel is a quantum generalization of a degraded broadcast channel, which is well known in classical information theory. The first communication task we consider is classical communication to both receivers, the second is quantum communication to the stronger receiver and classical communication to other, and the third is entanglement-assisted classical communication to the stronger receiver and unassisted classical communication to the other. The structure of a Hadamard broadcast channel plays a critical role in our analysis: The channel to the weaker receiver can be simulated by performing a measurement channel on the stronger receiver’s system, followed by a preparation channel. As such, we can incorporate the classical output of the measurement channel as an auxiliary variable and solve all three of the above capacities for Hadamard broadcast channels, in this way avoiding known difficulties associated with quantum auxiliary variables

    Classical codes for quantum broadcast channels

    Get PDF
    We present two approaches for transmitting classical information over quantum broadcast channels. The first technique is a quantum generalization of the superposition coding scheme for the classical broadcast channel. We use a quantum simultaneous nonunique decoder and obtain a proof of the rate region stated in [Yard et al., IEEE Trans. Inf. Theory 57 (10), 2011]. Our second result is a quantum generalization of the Marton coding scheme. The error analysis for the quantum Marton region makes use of ideas in our earlier work and an idea recently presented by Radhakrishnan et al. in arXiv:1410.3248. Both results exploit recent advances in quantum simultaneous decoding developed in the context of quantum interference channels.Comment: v4: 20 pages, final version to appear in IEEE Transactions on Information Theor

    Classical codes for quantum broadcast channels

    Get PDF
    We discuss two techniques for transmitting classical information over quantum broadcast channels. The first technique is a quantum generalization of the superposition coding scheme for the classical broadcast channel. We use a quantum simultaneous nonunique decoder and obtain a simpler proof of the rate region recently published by Yard et al. in independent work. Our second result is a quantum Marton coding scheme, which gives the best known achievable rate region for quantum broadcast channels. Both results exploit recent advances in quantum simultaneous decoding developed in the context of quantum interference channels. © 2012 IEEE

    An improved rate region for the classical-quantum broadcast channel

    Full text link
    We present a new achievable rate region for the two-user binary-input classical-quantum broadcast channel. The result is a generalization of the classical Marton-Gelfand-Pinsker region and is provably larger than the best previously known rate region for classical-quantum broadcast channels. The proof of achievability is based on the recently introduced polar coding scheme and its generalization to quantum network information theory.Comment: 5 pages, double column, 1 figure, based on a result presented in the Master's thesis arXiv:1501.0373

    Bounds on entanglement distillation and secret key agreement for quantum broadcast channels

    Get PDF
    The squashed entanglement of a quantum channel is an additive function of quantum channels, which finds application as an upper bound on the rate at which secret key and entanglement can be generated when using a quantum channel a large number of times in addition to unlimited classical communication. This quantity has led to an upper bound of log((1+η)/(1η))\log((1+\eta)/(1-\eta)) on the capacity of a pure-loss bosonic channel for such a task, where η\eta is the average fraction of photons that make it from the input to the output of the channel. The purpose of the present paper is to extend these results beyond the single-sender single-receiver setting to the more general case of a single sender and multiple receivers (a quantum broadcast channel). We employ multipartite generalizations of the squashed entanglement to constrain the rates at which secret key and entanglement can be generated between any subset of the users of such a channel, along the way developing several new properties of these measures. We apply our results to the case of a pure-loss broadcast channel with one sender and two receivers.Comment: 35 pages, 1 figure, accepted for publication in IEEE Transactions on Information Theor

    Entanglement-assisted private communication over quantum broadcast channels

    Get PDF
    We consider entanglement-assisted (EA) private communication over a quantum broadcast channel, in which there is a single sender and multiple receivers. We divide the receivers into two sets: the decoding set and the malicious set. The decoding set and the malicious set can either be disjoint or can have a finite intersection. For simplicity, we say that a single party Bob has access to the decoding set and another party Eve has access to the malicious set, and both Eve and Bob have access to the pre-shared entanglement with Alice. The goal of the task is for Alice to communicate classical information reliably to Bob and securely against Eve, and Bob can take advantage of pre-shared entanglement with Alice. In this framework, we establish a lower bound on the one-shot EA private capacity. When there exists a quantum channel mapping the state of the decoding set to the state of the malicious set, such a broadcast channel is said to be degraded. We establish an upper bound on the one-shot EA private capacity in terms of smoothed min- and max-entropies for such channels. In the limit of a large number of independent channel uses, we prove that the EA private capacity of a degraded quantum broadcast channel is given by a single-letter formula. Finally, we consider two specific examples of degraded broadcast channels and find their capacities. In the first example, we consider the scenario in which one part of Bob's laboratory is compromised by Eve. We show that the capacity for this protocol is given by the conditional quantum mutual information of a quantum broadcast channel, and so we thus provide an operational interpretation to the dynamic counterpart of the conditional quantum mutual information. In the second example, Eve and Bob have access to mutually exclusive sets of outputs of a broadcast channel.Comment: v2: 23 pages, 2 figures, accepted for publication in the special issue "Shannon's Information Theory 70 years on: applications in classical and quantum physics" for Journal of Physics
    corecore