1,116 research outputs found

    Gabriel Harvey and the History of Reading: Essays by Lisa Jardine and others

    Get PDF
    Few articles in the humanities have had the impact of Lisa Jardine and Anthony Grafton’s seminal ‘Studied for Action’ (1990), a study of the reading practices of Elizabethan polymath and prolific annotator Gabriel Harvey. Their excavation of the setting, methods and ambitions of Harvey’s encounters with his books ignited the History of Reading, an interdisciplinary field which quickly became one of the most exciting corners of the scholarly cosmos. A generation inspired by the model of Harvey fanned out across the world’s libraries and archives, seeking to reveal the many creative, unexpected and curious ways that individuals throughout history responded to texts, and how these interpretations in turn illuminate past worlds. Three decades on, Harvey’s example and Jardine’s work remain central to cutting-edge scholarship in the History of Reading. By uniting ‘Studied for Action’ with published and unpublished studies on Harvey by Jardine, Grafton and the scholars they have influenced, this collection provides a unique lens on the place of marginalia in textual, intellectual and cultural history. The chapters capture subsequent work on Harvey and map the fields opened by Jardine and Grafton’s original article, collectively offering a posthumous tribute to Lisa Jardine and an authoritative overview of the History of Reading

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Cybersecurity applications of Blockchain technologies

    Get PDF
    With the increase in connectivity, the popularization of cloud services, and the rise of the Internet of Things (IoT), decentralized approaches for trust management are gaining momentum. Since blockchain technologies provide a distributed ledger, they are receiving massive attention from the research community in different application fields. However, this technology does not provide cybersecurity by itself. Thus, this thesis first aims to provide a comprehensive review of techniques and elements that have been proposed to achieve cybersecurity in blockchain-based systems. The analysis is intended to target area researchers, cybersecurity specialists and blockchain developers. We present a series of lessons learned as well. One of them is the rise of Ethereum as one of the most used technologies. Furthermore, some intrinsic characteristics of the blockchain, like permanent availability and immutability made it interesting for other ends, namely as covert channels and malicious purposes. On the one hand, the use of blockchains by malwares has not been characterized yet. Therefore, this thesis also analyzes the current state of the art in this area. One of the lessons learned is that covert communications have received little attention. On the other hand, although previous works have analyzed the feasibility of covert channels in a particular blockchain technology called Bitcoin, no previous work has explored the use of Ethereum to establish a covert channel considering all transaction fields and smart contracts. To foster further defence-oriented research, two novel mechanisms are presented on this thesis. First, Zephyrus takes advantage of all Ethereum fields and smartcontract bytecode. Second, Smart-Zephyrus is built to complement Zephyrus by leveraging smart contracts written in Solidity. We also assess the mechanisms feasibility and cost. Our experiments show that Zephyrus, in the best case, can embed 40 Kbits in 0.57 s. for US1.64,andretrievethemin2.8s.SmartZephyrus,however,isabletohidea4Kbsecretin41s.Whilebeingexpensive(aroundUS 1.64, and retrieve them in 2.8 s. Smart-Zephyrus, however, is able to hide a 4 Kb secret in 41 s. While being expensive (around US 1.82 per bit), the provided stealthiness might be worth the price for attackers. Furthermore, these two mechanisms can be combined to increase capacity and reduce costs.Debido al aumento de la conectividad, la popularización de los servicios en la nube y el auge del Internet de las cosas (IoT), los enfoques descentralizados para la gestión de la confianza están cobrando impulso. Dado que las tecnologías de cadena de bloques (blockchain) proporcionan un archivo distribuido, están recibiendo una atención masiva por parte de la comunidad investigadora en diferentes campos de aplicación. Sin embargo, esta tecnología no proporciona ciberseguridad por sí misma. Por lo tanto, esta tesis tiene como primer objetivo proporcionar una revisión exhaustiva de las técnicas y elementos que se han propuesto para lograr la ciberseguridad en los sistemas basados en blockchain. Este análisis está dirigido a investigadores del área, especialistas en ciberseguridad y desarrolladores de blockchain. A su vez, se presentan una serie de lecciones aprendidas, siendo una de ellas el auge de Ethereum como una de las tecnologías más utilizadas. Asimismo, algunas características intrínsecas de la blockchain, como la disponibilidad permanente y la inmutabilidad, la hacen interesante para otros fines, concretamente como canal encubierto y con fines maliciosos. Por una parte, aún no se ha caracterizado el uso de la blockchain por parte de malwares. Por ello, esta tesis también analiza el actual estado del arte en este ámbito. Una de las lecciones aprendidas al analizar los datos es que las comunicaciones encubiertas han recibido poca atención. Por otro lado, aunque trabajos anteriores han analizado la viabilidad de los canales encubiertos en una tecnología blockchain concreta llamada Bitcoin, ningún trabajo anterior ha explorado el uso de Ethereum para establecer un canal encubierto considerando todos los campos de transacción y contratos inteligentes. Con el objetivo de fomentar una mayor investigación orientada a la defensa, en esta tesis se presentan dos mecanismos novedosos. En primer lugar, Zephyrus aprovecha todos los campos de Ethereum y el bytecode de los contratos inteligentes. En segundo lugar, Smart-Zephyrus complementa Zephyrus aprovechando los contratos inteligentes escritos en Solidity. Se evalúa, también, la viabilidad y el coste de ambos mecanismos. Los resultados muestran que Zephyrus, en el mejor de los casos, puede ocultar 40 Kbits en 0,57 s. por 1,64 US$, y recuperarlos en 2,8 s. Smart-Zephyrus, por su parte, es capaz de ocultar un secreto de 4 Kb en 41 s. Si bien es cierto que es caro (alrededor de 1,82 dólares por bit), el sigilo proporcionado podría valer la pena para los atacantes. Además, estos dos mecanismos pueden combinarse para aumentar la capacidad y reducir los costesPrograma de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: José Manuel Estévez Tapiador.- Secretario: Jorge Blasco Alís.- Vocal: Luis Hernández Encina

    (b2023 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2006-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy (this manuscript would require a REVOLUTION in international academy environment!)

    Get PDF
    (b2023 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2006-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy (this manuscript would require a REVOLUTION in international academy environment!

    Technological, organisational, and environmental factors affecting the adoption of blockchain-based distributed identity management in organisations

    Get PDF
    Background: Blockchain is a disruptive technology with the potential to innovate businesses. Ignoring or resisting it might result in a competitive disadvantage for organisations. Apart from its original financial application of cryptocurrency, other applications are emerging, the most common being supply chain management and e-voting systems. However, there is less focus on information and cybersecurity applications, especially from the enterprise perspective. This research addresses this knowledge gap, focussing on its application of distributed identity management in organisations. Objectives: The main objective is to investigate technological, organisational, and environmental (TOE) factors affecting the adoption of blockchain-based distributed identity management (BDIDM) in organisations to determine the most critical factors. Secondary objectives include determining whether the blockchain type affects BDIDM adoption and whether the TOE-BDIDM model measuring the phenomenon is effective and appropriate. But given the relative newness of blockchain, the initial goal consists of intensively exploring the topic to understand the practicality of adopting BDIDM in organisations and establishing whether claims made around it are factual than just due to the blockchain hype. Methodology: The study uses meta-synthesis to explore the topic, summarising 69 papers selected qualitatively from reputed academic sources. The study then surveys 111 information and cybersecurity practitioners selected randomly in South African organisations to investigate the TOE factors affecting BDIDM adoption. To do so, it utilises an online questionnaire rooted in an adapted TOE model called TOE-BDIDM as a data collection instrument. The analysis of this primary data is purely quantitative and includes (i) Structural Equation Modelling (SEM) of the measurement model, i.e. confirmatory factor analysis (CFA); (ii) binary logistics regression analysis; and (iii) Chi-Square tests Results: Meta-synthesis revealed theoretical grounds underlying claims made around the topic while spotting diverging views about BDIDM practicality for the enterprise context. It also identifies the TOE theory as more suitable to explain the phenomenon. Binary logistics regression modelling reveals that TOE factors do affect BDIDM adoption in organisations, either positively or negatively. The factors predict BDIDM adopters and non-adopters, with Technology Characteristics being the most critical factor and the most that could predict BDIDM non-adopters. Organisation Readiness was the second critical factor, the most that could predict BDIDM adopters. Overall, TOE-BDIDM effectively predicted 92.5% of adopters and 45.2% of non-adopters. CFA indicates that TOE-BDIDM appropriateness for investigating the phenomenon is relatively fair. The Chi-Square tests reveal a significant association between Blockchain Type and BDIDM adoption. Implications: The discussion highlights various implications of the above findings, including the plausibility of the impartiality of typical privacy-preserving BDIDM models like the Selfsovereign identity: The majority of respondents preferred private permissioned blockchain, which tends to be centralised, more intermediated, and less privacy-preserving. The rest implications relate to the disruptiveness nature of BDIDM and the BDIDM adoption being more driven by technological than organisational or environmental factors. The study ends by reflecting on the research process and providing fundamental limitations and recommendations for future researc

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Strain Mapping of Single Nanowires using Nano X-ray Diffraction

    Get PDF
    Nanowires are explored as basic components for a large range of electronic devices. The nanowire format offersseveral benefits, including reduced material consumption and increased potential for combining materials to formnew novel heterostructures. Several factors, such as mechanical stress from contacting or a lattice mismatch in aheterostructure, can strain and change the lattice tilt. The strain is often intertwined with small gradients ofcomposition. The strain relaxation can differ significantly from bulk due to the small diameters, but the mechanismsare not fully comprehended. X-rays have a penetrating power that makes it possible to investigate embeddedsamples without preparation or slicing. The high flux of coherent X-ray beams from synchrotron radiation facilities,combined with the nano-focus capabilities developed in recent years, have made it possible to probe nano-crystals.The 4th generation of synchrotrons, including MAX IV in Lund, Sweden, has even higher brilliance than previoussources. Diffraction imaging techniques using synchrotron radiation can reveal small strains down to 10-4-10-5. Thefield of coherent imaging pushes the limits of resolutions below the size of the focus. With Bragg ptychography, thedisplacement field in a crystal can be probed with resolution beyond the probe focus by numerically reconstructingthe phase.This thesis includes the development of X-ray nano-diffraction methods for the characterizing of nanowires, includingGaInP/InP barcode nanowires, p-i-n InP nanowire devices and metal halide perovskite CsPbBr3 nanowires. Itincludes a theoretical background of the scattering mechanisms in Thomson scattering in nano-crystals, goesthrough the formalism for coherent diffraction imaging, crystal structure and deformation in nanoobjects and thetechnical aspects of the experimental setup and measurement. Moreover, theoretical modelling of elastic strainrelaxation in these nanowires was performed with finite element modelling.Single III-V nanowire heterostructures and III-V nanowire devices were probed with scanning XRD and Braggprojection ptychography (BPP). How the techniques compare to each other and how the results are affected by thedifferent approximations that are made in the respective technique was explored. Finite element simulationscombined with nano-diffraction revealed that the lattice mismatch of 1.5% could be relaxed elastically for thediameter of 180 nm. From the strain mapping of the nanowire device, we found how the contacting of the nanowirebends the nanowire resulting in a tilt normal to the substrate.Single perovskite metal-halide perovskite CsPb(Br(1-x)Clx)3 nanowire heterostructures were characterized withscanning nano-XRD and XRF, which showed that the lattice spacing was affected by composition and strain.Composition gradients revealed that Cl diffusion had taken place within the heterostructure. Furthermore, extractingthe lattice tilts from shifts of the Bragg peak revealed a ferroelastic domain structure with simultaneously existinglattice tilts. These findings are beneficial for the further development of MHP nanowires devices
    corecore