1,073 research outputs found

    A Study on the Noise Threshold of Fault-tolerant Quantum Error Correction

    Full text link
    Quantum circuits implementing fault-tolerant quantum error correction (QEC) for the three qubit bit-flip code and five-qubit code are studied. To describe the effect of noise, we apply a model based on a generalized effective Hamiltonian where the system-environment interactions are taken into account by including stochastic fluctuating terms in the system Hamiltonian. This noise model enables us to investigate the effect of noise in quantum circuits under realistic device conditions and avoid strong assumptions such as maximal parallelism and weak storage errors. Noise thresholds of the QEC codes are calculated. In addition, the effects of imprecision in projective measurements, collective bath, fault-tolerant repetition protocols, and level of parallelism in circuit constructions on the threshold values are also studied with emphasis on determining the optimal design for the fault-tolerant QEC circuit. These results provide insights into the fault-tolerant QEC process as well as useful information for designing the optimal fault-tolerant QEC circuit for particular physical implementation of quantum computer.Comment: 9 pages, 9 figures; to be submitted to Phys. Rev.

    A practical scheme for error control using feedback

    Get PDF
    We describe a scheme for quantum error correction that employs feedback and weak measurement rather than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this scheme over previous protocols (for example Ahn et. al, PRA, 65, 042301 (2001)), is that it requires little side processing while remaining robust to measurement inefficiency, and is therefore considerably more practical. We evaluate the performance of our scheme by simulating the correction of bit-flips. We also consider implementation in a solid-state quantum computation architecture and estimate the maximal error rate which could be corrected with current technology.Comment: 12 pages, 3 figures. Minor typographic change

    Homological Error Correction: Classical and Quantum Codes

    Get PDF
    We prove several theorems characterizing the existence of homological error correction codes both classically and quantumly. Not every classical code is homological, but we find a family of classical homological codes saturating the Hamming bound. In the quantum case, we show that for non-orientable surfaces it is impossible to construct homological codes based on qudits of dimension D>2D>2, while for orientable surfaces with boundaries it is possible to construct them for arbitrary dimension DD. We give a method to obtain planar homological codes based on the construction of quantum codes on compact surfaces without boundaries. We show how the original Shor's 9-qubit code can be visualized as a homological quantum code. We study the problem of constructing quantum codes with optimal encoding rate. In the particular case of toric codes we construct an optimal family and give an explicit proof of its optimality. For homological quantum codes on surfaces of arbitrary genus we also construct a family of codes asymptotically attaining the maximum possible encoding rate. We provide the tools of homology group theory for graphs embedded on surfaces in a self-contained manner.Comment: Revtex4 fil
    • …
    corecore