19 research outputs found

    Quantum walk speedup of backtracking algorithms

    Full text link
    We describe a general method to obtain quantum speedups of classical algorithms which are based on the technique of backtracking, a standard approach for solving constraint satisfaction problems (CSPs). Backtracking algorithms explore a tree whose vertices are partial solutions to a CSP in an attempt to find a complete solution. Assume there is a classical backtracking algorithm which finds a solution to a CSP on n variables, or outputs that none exists, and whose corresponding tree contains T vertices, each vertex corresponding to a test of a partial solution. Then we show that there is a bounded-error quantum algorithm which completes the same task using O(sqrt(T) n^(3/2) log n) tests. In particular, this quantum algorithm can be used to speed up the DPLL algorithm, which is the basis of many of the most efficient SAT solvers used in practice. The quantum algorithm is based on the use of a quantum walk algorithm of Belovs to search in the backtracking tree. We also discuss how, for certain distributions on the inputs, the algorithm can lead to an exponential reduction in expected runtime.Comment: 23 pages; v2: minor changes to presentatio

    Transition Probabilities in Generalized Quantum Search Hamiltonian Evolutions

    Full text link
    A relevant problem in quantum computing concerns how fast a source state can be driven into a target state according to Schr\"odinger's quantum mechanical evolution specified by a suitable driving Hamiltonian. In this paper, we study in detail the computational aspects necessary to calculate the transition probability from a source state to a target state in a continuous time quantum search problem defined by a multi-parameter generalized time-independent Hamiltonian. In particular, quantifying the performance of a quantum search in terms of speed (minimum search time) and fidelity (maximum success probability), we consider a variety of special cases that emerge from the generalized Hamiltonian. In the context of optimal quantum search, we find it is possible to outperform, in terms of minimum search time, the well-known Farhi-Gutmann analog quantum search algorithm. In the context of nearly optimal quantum search, instead, we show it is possible to identify sub-optimal search algorithms capable of outperforming optimal search algorithms if only a sufficiently high success probability is sought. Finally, we briefly discuss the relevance of a tradeoff between speed and fidelity with emphasis on issues of both theoretical and practical importance to quantum information processing.Comment: 17 pages, 6 figures, 3 tables. Online ready in Int. J. Geometric Methods in Modern Physics (2020

    Fault-ignorant Quantum Search

    Full text link
    We investigate the problem of quantum searching on a noisy quantum computer. Taking a 'fault-ignorant' approach, we analyze quantum algorithms that solve the task for various different noise strengths, which are possibly unknown beforehand. We prove lower bounds on the runtime of such algorithms and thereby find that the quadratic speedup is necessarily lost (in our noise models). However, for low but constant noise levels the algorithms we provide (based on Grover's algorithm) still outperform the best noiseless classical search algorithm.Comment: v1: 15+8 pages, 4 figures; v2: 19+8 pages, 4 figures, published version (Introduction section significantly expanded, presentation clarified, results and order unchanged

    Improved Quantum Query Complexity on Easier Inputs

    Full text link
    Quantum span program algorithms for function evaluation sometimes have reduced query complexity when promised that the input has a certain structure. We design a modified span program algorithm to show these improvements persist even without a promise ahead of time, and we extend this approach to the more general problem of state conversion. As an application, we prove exponential and superpolynomial quantum advantages in average query complexity for several search problems, generalizing Montanaro's Search with Advice [Montanaro, TQC 2010].Comment: 35 pages, 2 figures. This article supersedes arXiv/2012.01276 (expanded author list, new application, improved algorithm
    corecore