15,109 research outputs found

    Quantum walk speedup of backtracking algorithms

    Full text link
    We describe a general method to obtain quantum speedups of classical algorithms which are based on the technique of backtracking, a standard approach for solving constraint satisfaction problems (CSPs). Backtracking algorithms explore a tree whose vertices are partial solutions to a CSP in an attempt to find a complete solution. Assume there is a classical backtracking algorithm which finds a solution to a CSP on n variables, or outputs that none exists, and whose corresponding tree contains T vertices, each vertex corresponding to a test of a partial solution. Then we show that there is a bounded-error quantum algorithm which completes the same task using O(sqrt(T) n^(3/2) log n) tests. In particular, this quantum algorithm can be used to speed up the DPLL algorithm, which is the basis of many of the most efficient SAT solvers used in practice. The quantum algorithm is based on the use of a quantum walk algorithm of Belovs to search in the backtracking tree. We also discuss how, for certain distributions on the inputs, the algorithm can lead to an exponential reduction in expected runtime.Comment: 23 pages; v2: minor changes to presentatio

    Quantum and Classical Strong Direct Product Theorems and Optimal Time-Space Tradeoffs

    Full text link
    A strong direct product theorem says that if we want to compute k independent instances of a function, using less than k times the resources needed for one instance, then our overall success probability will be exponentially small in k. We establish such theorems for the classical as well as quantum query complexity of the OR function. This implies slightly weaker direct product results for all total functions. We prove a similar result for quantum communication protocols computing k instances of the Disjointness function. Our direct product theorems imply a time-space tradeoff T^2*S=Omega(N^3) for sorting N items on a quantum computer, which is optimal up to polylog factors. They also give several tight time-space and communication-space tradeoffs for the problems of Boolean matrix-vector multiplication and matrix multiplication.Comment: 22 pages LaTeX. 2nd version: some parts rewritten, results are essentially the same. A shorter version will appear in IEEE FOCS 0

    Lower Bounds on Quantum Query Complexity

    Full text link
    Shor's and Grover's famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and specifically how to prove limits on their computational power. We cover the main known techniques for proving lower bounds, and exemplify and compare the methods.Comment: survey, 23 page

    Claw Finding Algorithms Using Quantum Walk

    Get PDF
    The claw finding problem has been studied in terms of query complexity as one of the problems closely connected to cryptography. For given two functions, f and g, as an oracle which have domains of size N and M (N<=M), respectively, and the same range, the goal of the problem is to find x and y such that f(x)=g(y). This paper describes an optimal algorithm using quantum walk that solves this problem. Our algorithm can be generalized to find a claw of k functions for any constant integer k>1, where the domains of the functions may have different size.Comment: 12 pages. Introduction revised. A reference added. Weak lower bound delete

    A New Quantum Lower Bound Method, with Applications to Direct Product Theorems and Time-Space Tradeoffs

    Full text link
    We give a new version of the adversary method for proving lower bounds on quantum query algorithms. The new method is based on analyzing the eigenspace structure of the problem at hand. We use it to prove a new and optimal strong direct product theorem for 2-sided error quantum algorithms computing k independent instances of a symmetric Boolean function: if the algorithm uses significantly less than k times the number of queries needed for one instance of the function, then its success probability is exponentially small in k. We also use the polynomial method to prove a direct product theorem for 1-sided error algorithms for k threshold functions with a stronger bound on the success probability. Finally, we present a quantum algorithm for evaluating solutions to systems of linear inequalities, and use our direct product theorems to show that the time-space tradeoff of this algorithm is close to optimal.Comment: 16 pages LaTeX. Version 2: title changed, proofs significantly cleaned up and made selfcontained. This version to appear in the proceedings of the STOC 06 conferenc

    A lower bound on the quantum query complexity of read-once functions

    Get PDF
    We establish a lower bound of Ω(n)\Omega{(\sqrt{n})} on the bounded-error quantum query complexity of read-once Boolean functions, providing evidence for the conjecture that Ω(D(f))\Omega(\sqrt{D(f)}) is a lower bound for all Boolean functions. Our technique extends a result of Ambainis, based on the idea that successful computation of a function requires ``decoherence'' of initially coherently superposed inputs in the query register, having different values of the function. The number of queries is bounded by comparing the required total amount of decoherence of a judiciously selected set of input-output pairs to an upper bound on the amount achievable in a single query step. We use an extension of this result to general weights on input pairs, and general superpositions of inputs.Comment: 12 pages, LaTe
    • …
    corecore