
Theoretical Computer Science 410 (2009) 5285–5297

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Claw finding algorithms using quantum walk
Seiichiro Tani ∗
Quantum Computation and Information Project, Solution-Oriented Research for Science and Technology, Japan Science and Technology Agency, 5-28-3 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
NTT Communication Science Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan

a r t i c l e i n f o

Keywords:
Quantum computing
Query complexity
Oracle computation
Quantum walk

a b s t r a c t

The claw finding problem has been studied in terms of query complexity as one of the
problems closely connected to cryptography. Given two functions, f and g , with domain
sizes N and M(N ≤ M), respectively, and the same range, the goal of the problem is to
find x and y such that f (x) = g(y). This problem has been considered in both quantum and
classical settings in terms of query complexity. This paper describes an optimal algorithm
that uses quantum walk to solve this problem. Our algorithm can be slightly modified to
solve themore general problemof finding a tuple consisting of elements in the two function
domains that has a prespecified property. It can also be generalized to find a claw of k
functions for any constant integer k > 1, where the domain sizes of the functions may be
different.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The most significant discoveries in quantum computation would be Shor’s polynomial-time quantum algorithms for
factoring integers and computing discrete logarithms [17], both of which are believed to be hard to solve in classical
settings and are thus used in arguments for the security of the widely used cryptosystems. Another significant discovery
is Grover’s quantum algorithm for the problem of searching an unstructured set [11], i.e., the problem of searching for
i ∈ {0, 1, . . . ,N − 1} such that f (i) = 1 for a hidden Boolean function f ; it has yielded a variety of generalizations
[3,12,2,18]. Grover’s algorithm and its generalizations assume the oracle computation model, in which a problem instance is
given as a black box (called an oracle) and any algorithm needs tomake queries to the black box to get sufficient information
about the instance. In the case of searching an unstructured set, any algorithm needs to make queries of the form ‘‘what is
the value of function f for input i ?’’ to the given oracle. In the oracle computation model, the efficiency of an algorithm is
usually measured by the number of queries the algorithm needs to make, i.e., by the query complexity of the algorithm. The
query complexity of a problem means the query complexity of the algorithm that solves the problem with fewest queries.
One of the earliest applications of Grover’s algorithm was the bounded-error algorithm of Brassard, Høyer and Tapp [4];

it addressed the collision problem in a cryptographic context, i.e., finding a pair (x, y) such that f (x) = f (y), in a given 2-
to-1 function f of domain size N . Their quantum algorithm requires O(N1/3) queries, whereas any bounded-error classical
algorithm needsΘ(N1/2) queries. Subsequently, Aaronson and Shi [1] proved the matching lower bound. Brassard et al. [4]
considered two more related problems: the element distinctness problem and the claw finding problem. These problems
are also important in a cryptographic sense. Furthermore, studying these problems has deepened our understanding of the
power of quantum computation.
The element distinctness problem is to decide whether or not N integers given as an oracle are all distinct. Buhrman

et al. [7] gave a bounded-error algorithm for the problem, which makes O(N3/4) queries (strictly speaking, they assumed

∗ Corresponding address: NTT Communication Science Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
E-mail address: tani@theory.brl.ntt.co.jp.

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.08.030

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82575448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:tani@theory.brl.ntt.co.jp
http://dx.doi.org/10.1016/j.tcs.2009.08.030

5286 S. Tani / Theoretical Computer Science 410 (2009) 5285–5297

a comparison oracle, which returns just the result of comparing function values for two specified inputs, and, in this case,
the query complexity is O(N3/4 logN)). Subsequently, Ambainis [2] gave an improved upper bound O(N2/3) by introducing
a new framework of quantum walk (his quantum walk algorithm was reviewed from a slightly more general point of view
in [15,9], and a much more general framework was given by Szegedy [18]). This upper bound matches the lower bound
proved by Aaronson and Shi [1].
The claw finding problem is defined as follows. Given two functions f : X → Z and g : Y → Z as an oracle, decide

whether or not there exists at least one pair (x, y) ∈ X × Y , called a claw, such that f (x) = g(y), and find a claw if it exists,
where X and Y are domains of size N andM (N ≤ M), respectively. By clawfinding(N,M), we mean this problem.
After Brassard et al. [4] considered a special case of the claw finding problem, Buhrman et al. [6] gave a quantumalgorithm

that requires O(N1/2M1/4) queries for N ≤ M < N2 and O(M1/2) queries for M ≥ N2 (strictly speaking, they assumed a
comparison oracle, and, in this case, the query complexity is multiplied by logN). They also proved that any algorithm
requiresΩ(M1/2) queries by reducing the search problem over an unstructured set to the claw finding problem. Thus, while
their bounds of the query complexity are tightwhenM ≥ N2, there is still a big gapwhenN ≤ M < N2. They also considered
the case of k functions, i.e., the k-claw finding problem defined as follows: given k functions fi : Xi := {1, . . . ,Ni} → Z (i ∈
{1, . . . , k}) as an oracle, where k > 1 is any constant integer, and Ni ≤ Nj if i < j, decide whether or not there exists at least
one k-claw, i.e., a tuple (x1, . . . , xk) ∈ X1 × · · · × Xk such that fi(xi) = fj(xj) for any i, j ∈ {1, . . . , k}, and find a k-claw if
it exists. A generalization of their algorithm works well for the k-claw finding problem; its query complexity is O(N1−1/2

k
)

if Ni = N for all i ∈ {1, . . . , k}. If the promise is assumed that there is at most one solution, it has been shown in [15]
that the quantum walk algorithm in [2] for the element distinctness problem is general enough to be applied with slight
modification to the k-claw finding problem; this yields, with random reduction, query complexity Õ((

∑k
i=1 Ni)

k
k+1) for the

problemwithout the promise of a single solution. Zhang [19] generalized the quantumwalk algorithm in [2] to solve the claw
finding problemwith the single-solution promise by making O((NM)1/3) queries for N ≤ M < N2 and O(M1/2) forM ≥ N2.
This upper bound is optimal, since the matching lower bound Ω((NM)1/3) was proved in [19] by reducing the collision
problem to the claw finding problem. Zhang also showed that the algorithm can be generalized to solve the more general
problem of finding a tuple consisting of elements in the domains of given k functions with the single-solution promise. To
solve the problems without the promise, we usually use a randomized reduction to the problem with the single-solution
promise, which is known to increase the query complexity by at most a log factor as pointed out in [15].
This paper gives an optimal quantum algorithm that directly solves the claw finding problemwithout the single-solution

promise. The query complexity of our algorithm is as follows:

Q (clawfinding(N,M)) =
{
O
(
(NM)1/3

)
(N ≤ M < N2)

O
(
M1/2

)
(M ≥ N2),

where Q (P) represents the number of queries required to solve problem P with one-sided bounded error (i.e., with the one-
sided error probability bounded by a certain constant, say, 1/3). The optimality is guaranteed by the lower bounds given in
[6,19]. Our algorithm can bemodified to solve themore general problem of finding a tuple (x1, . . . , xp, y1, . . . , yq) ∈ Xp×Y q
such that xi 6= xj and yi 6= yj for any i 6= j, and (f (x1), . . . , f (xp), g(y1), . . . , g(yq)) ∈ R, for given R ⊆ Zp+q, where p and
q are positive constant integers. We call this the (p, q)-subset finding problem and denote it by (p, q)-subsetfinding(N,M)).
Thus, clawfinding(N,M) is a special case of (p, q)-subsetfinding(N,M)) with p = q = 1 and equality relation R. The query
complexity is

Q ((p, q)-subsetfinding(N,M)) =
{
O((NpMq)1/(p+q+1)) N ≤ M < N1+1/q

O(Mq/(1+q)) M ≥ N1+1/q.

Our claw finding algorithm first finds subsets X̃ ⊆ X and Ỹ ⊆ Y of size O(1) such that there is a claw in X̃ × Ỹ , by using
binary and 4-ary searches over X and Y ; to decide with which branch we should proceed at each visited node in the search
trees, we use a subroutine that decides, with one-sided bounded error, whether or not there exists a claw of two functions
f and g . The algorithm then searches X̃ × Ỹ for a claw by making classical queries. If we naïvely repeat the bounded-error
subroutineO(logM) times at each visited node to guarantee bounded error as awhole, a ‘‘log’’ factorwill bemultiplied to the
total query complexity. Instead, at the node of depth s in the search trees, we repeat the subroutine O(s) times to amplify
success probability. This achieves bounded error as a whole, while pushing up the query complexity by just a constant
multiplicative factor. This binary search technique can be used to solve other problems such as the search version of the
element distinctness problem, together with the quantum walk in [18].
The subroutine is developed around the Szegedy’s quantum walk framework [18] over a Markov chain on the graph

categorical product of two Johnson graphs, which correspond to the two functions (with an idea similar to the one used
in [8]). The Johnson graph J(n, k) is a connected regular graph with

(n
k

)
vertices such that every vertex is a subset of size k

of [n]; two vertices are adjacent if and only if the symmetric difference of their corresponding subsets has size 2. For two
functions f and g with domains X and Y such that |X | ≤ |Y |, the subroutine applies Szegedy’s quantum walk to the graph
categorical product of two Johnson graphs Jf = J(|X |, (|X ||Y |)1/3) and Jg = J(|Y |, (|X ||Y |)1/3) if |Y | ≤ |X |2 and to that of
Jf = J(|X |, |X |) and Jg = J(|Y |, |X |) otherwise.

S. Tani / Theoretical Computer Science 410 (2009) 5285–5297 5287

Our algorithm can be generalized to the k-claw finding problem. For the k-claw finding problem k-clawfinding(N1, . . . ,Nk)
against the k functions with domain sizes Ni (i = 1, . . . , k), respectively,

Q (k-clawfinding(N1, . . . ,Nk)) =


O

(k∏
i=1
Ni

) 1
k+1

 if
k∏
i=2
Ni = O(Nk1),

O

(√
k∏
i=2
Ni/Nk−21

)
otherwise.

Our algorithms canworkwith slightmodification even against a comparison oracle (i.e., against an oracle that, for a given
pair of inputs (xi, xj) ∈ Xi×Xj, only decides which is the larger of two function values fi(xi) and fj(xj)); the query complexity
increases by a multiplicative factor of logN1 for the k-function case (logN for the two-function case).

Related works

Recently,Magniez et al. [14] developed a newquantumwalk over aMarkov chain. One of the advantages of their quantum
walk over Szegedy’s is that theirs can find a marked vertex if there is at least one marked vertex, which would simplify our
algorithm. Interestingly, our algorithm shows that Szegedy’s quantum walk together with carefully adjusted binary search
can find a solution to some interesting problems, such as the claw finding problem and the element distinctness problem,
with the same order of query complexity.
As for the technique of gradually boosting success probability, which we use for efficient binary searches, Dürr et al. [10]

used a similar idea to repeatedly search the edges of aminimumspanning tree. Høyer et al. [12] introduced an error reduction
technique with a similar flavor; however, their technique is used in an algorithmic context different from ours: their error
reduction is performed at each recursion level while ours is sequentially used at each step of the search tree.

Organization

Section 2 defines the problems and the oracle models considered in this paper and gives the quantum walk theorem
proved in [18]. Section 3 describes algorithms that decide whether or not there are claws, (p, q)-subsets, and k-claws. These
algorithms are used as subroutines in the next section. Section 4 presents algorithms for the claw finding problem, the
(p, q)-subset finding problem, and the k-claw finding problem. Section 5 concludes the paper.

2. Preliminaries

This section defines problems and introduces some useful techniques. (We omit the basics of quantum computing. For
reference, see standard text books, e.g., [16,13].)
We denote the set of positive integers by Z∗, the set of {i : j ≤ i ≤ k for i, j, k ∈ Z∗} by [j.k], and [1.k] by [k] for short.

Problem 1 (Claw Finding Problem). Given two functions f : X := [N] → Z and g : Y := [M] → Z as an oracle for N ≤ M ,
where Z := [|Z |], decide whether or not there exists at least one pair (x, y) ∈ X × Y , called a claw, such that f (x) = g(y),
and find a claw if it exists.

We also define an easier problem as the problem of just deciding whether or not there exists at least one claw, which we
call the claw detection problem.
In a quantum setting, the two functions are given as quantum oracle Of ,g , which is defined as Of ,g : |i, h, z, w〉 −→

|i, h, z ⊕Hi(h) (mod |Z |), w〉,where i ∈ {0, 1} h ∈ X ∪ Y , z ∈ Z ,w ∈ [W] for someW := W (N,M) < +∞, H0(h) := f (h)
and H1(h) := g(h). This kind of oracle, which returns the value of the function(s), is called a standard oracle.
Another type of oracle is called the comparison oracle, which, for two given inputs, only decides which is the larger

of the two function values corresponding to the inputs. More formally, comparison oracle Of ,g is defined as Of ,g :
|i, hi, j, hj, b, w〉 −→ |i, hi, j, hj, b ⊕ [Hi(hi) ≤ Hj(hj)], w〉, where hi, hj ∈ X ∪ Y , i, j, b ∈ {0, 1},W := W (N,M) < +∞,
H0(h) := f (h), H1(h) := g(h), [Hi(hi) ≤ Hj(hj)] is the predicate such that its value is 1 if and only if Hi(hi) ≤ Hj(hj).
It is obvious that, if we are given a standard oracle, we can realize a comparison oracle by making O(1) queries to the

standard oracle. Thus, upper bounds for a comparison oracle are those for a standard oracle, and lower bounds for a standard
oracle are those for a comparison oracle, if we ignore constant multiplicative factors.
Amore general problem against the same standard oracle as given in the claw finding problem is the (p, q)-subset finding

problem.

Problem 2 ((p, q)-Subset Finding Problem). Given two functions f : X := [N] → Z and g : Y := [M] → Z as a standard
oracle for N ≤ M , constant positive integers p, q, and relation R ⊆ Zp+q, (1) decide whether or not there exists at least one
tuple (x1, . . . , xp, y1, . . . , yq) ∈ Xp×Y q such that xi 6= xj and yi 6= yj for any i 6= j, and (f (x1), . . . , f (xp), g(y1), . . . , g(yq)) ∈
R, and (2) find such a tuple if it exists.

An easier related problem is to just decide whether or not there exists at least one tuple satisfying the above condition,
which we call the (p, q)-subset detection problem.

5288 S. Tani / Theoretical Computer Science 410 (2009) 5285–5297

Buhrman et al. [6] generalized the claw finding problem to a k-function case.

Problem 3 (k-Claw Finding Problem). Given k functions fi : Xi := [Ni] → Z (i ∈ [k]) as an oracle, where Ni ≤ Nj if i < j,
and Z := [|Z |], decide whether or not there exists at least one k-claw, i.e., a tuple (x1, . . . , xk) ∈ X1 × · · · × Xk such that
fi(xi) = fj(xj) for any i, j ∈ [k], and find a k-claw if it exists.

An easier problem, called the k-claw detection problem, is defined as that of just deciding whether or not there exists at least
one k-claw.
Standard and comparison oracles are defined in almost the same way as in the two-function case, except that input h

belongs to one of Xi’s for i ∈ [k] and function identifier i is extended to the k-function case.
The next theorem describes Szegedy’s quantum walk framework.

Theorem 1 ([18]). LetM be a symmetric Markov chain with state set V and transition matrix P and let δM be the spectral gap
of P, i.e., 1 −maxi |λi| for the eigenvalues λi’s of P. For a certain subset V ′ ⊆ V with the promise that |V ′| is either 0 or at least
ε|V | for 0 < ε < 1, every element in V ′ is marked. For T = O(1/

√
εδM), the next quantum algorithm decides whether |V ′| is 0

(‘‘false’’) or at least ε|V | (‘‘true’’) with one-sided bounded error with cost O(CU + (CF + CW)/
√
δMε), where C =

∑
i |ci〉〈ci| for

|ci〉 =
∑
j

√
Pi,j|i〉|j〉 and R =

∑
j |rj〉〈rj| for |rj〉 =

∑
i

√
Pj,i|i〉|j〉:

1. Prepare |0〉 in a one-qubit register R0, and prepare a uniform superposition |φ0〉 := 1
√
r|V |

∑
i,j∈V ,Pi,j 6=0

|i〉|j〉 in a register R1
with cost at most CU , where r is the number of adjacent states (of any state) inM.

2. Apply the Hadamard operator 1
√
2

(
1 1
1 −1

)
to R0.

3. For randomly and uniformly chosen 1 ≤ t ≤ T , apply the next operation W t times to R1 if the content of R0 is ‘‘1.’’
3.1 To any |i〉|j〉, perform the next steps: (i) Check if i ∈ V ′ with cost at most CF . (ii) If i 6∈ V ′, apply diffusion operator 2C − I
with cost at most CW .

3.2 To any |i〉|j〉, perform the next steps: (i) Check if j ∈ V ′ with cost at most CF . (ii) If j 6∈ V ′, apply diffusion operator 2R− I
with cost at most CW .

4. Apply the Hadamard operator to R0, and measure registers R0 and R1 with respect to the computational basis {|0〉, |1〉}.
5. If the result of measuring R0 is 1 or a marked element is found by measuring R1, output ‘‘true’’; otherwise output ‘‘false.’’

3. Detection algorithms

In this section, we describe a ‘‘claw detection’’ algorithm that decides whether there exists a claw, i.e., solves the claw
detection problem, and generalize the algorithm. The claw detection algorithm and its generalization will be used as
subroutines in the algorithms presented in the next section.
Before presenting the claw detection algorithms, we introduce some notions. The Johnson graph J(n, k) is a connected

regular graph with
(n
k

)
vertices such that every vertex is a subset of size k of [n]; two vertices are adjacent if and only if the

symmetric difference of their corresponding subsets has size 2. The graph categorical product G := (VG, EG) of two graphs
G1 := (VG1 , EG1) and G2 := (VG2 , EG2), denoted by G := G1 × G2, is a graph having vertex set VG := VG1 × VG2 such that
((v1, v2), (v

′

1, v
′

2)) ∈ EG if and only if (v1, v
′

1) ∈ EG1 and (v2, v
′

2) ∈ EG2 .
The next two propositions are useful in analyzing the claw detection algorithms we will describe.

Proposition 2. For Markov chainsM,M1, . . . ,Mk, the spectral gap δ ofM is the minimum of those δ1, . . . , δk ofM1, . . . ,Mk,
i.e., δ = mini{δi}, if the underlying graph ofM is the graph categorical product of those ofM1, . . . ,Mk.

This is because the transition matrix ofM is the tensor product of those matrices ofM1, . . . ,Mk.
The eigenvalues of the Markov chain on J(n, k) are (k−j)(n−k−j)−j

k(n−k) for j ∈ [0.k] [5, pages 255–256], from which the next
proposition follows.

Proposition 3. The Markov chain on Johnson graph J(n, k) has spectral gap δ = Ω(1/k), if 2 ≤ k ≤ n/2.

3.1. Claw detection

Wewill first describe a claw detection algorithm against a comparison oracle, fromwhich we can almost trivially obtain
a claw detection algorithm against a standard oracle. Let Claw_Detect denote the algorithm.

3.1.1. Markov chain
To construct Claw_Detect, we apply Theorem 1 on the graph categorical product of two Johnson graphs Jf = J(|X |, l) and

Jg = J(|Y |,m) for the domains X and Y of functions f and g , respectively, where l andm (l ≤ m) are integers fixed later.
More precisely, let F and G be any vertices of Jf and Jg , respectively, i.e., any l-element subset andm-element subset of X

and Y , respectively; (F ,G) is a vertex in Jf × Jg .Thus, ((F ,G), (F ′,G′)) is an edge connecting two vertices (F ,G) and (F ′,G′)

S. Tani / Theoretical Computer Science 410 (2009) 5285–5297 5289

1 Transform |F ,G, LF ,G〉|F ′,G′, LF ′,G′〉 into |F ,G, LF ,G〉|F ′,G′, LF ,G〉.
2 Apply diffusion operator 2Ĉ − I to obtain a superposition of |F ,G, LF ,G〉|F ′′,G′′, LF ,G〉 over all (F ′′,G′′) adjacent to (F ,G).
3 Transform |F ,G, LF ,G〉|F ′′,G′′, LF ,G〉 into |F ,G, LF ,G〉|F ′′,G′′, LF ′′,G′′〉.

Fig. 1. Implementation of the diffusion operator 2C − I .

in Jf × Jg if and only if (F , F ′) and (G,G′) are edges of Jf and Jg , respectively. Hereafter, ((F ,G), (F ′,G′)) ∈ Jf × Jg means
that ((F ,G), (F ′,G′)) is an edge of Jf × Jg . We next define ‘‘marked vertices’’ as follows. Vertex (F ,G) is marked if there is
a pair of (x, y) ∈ F × G such that f (x) = g(y). To check if (F ,G) is marked or not, we just sort all elements in F ∪ G on
their function values. Although we have to sort all elements in the initial vertex, we have only to change a small part of the
sorted list we already had when moving to an adjacent vertex. This is because the sets corresponding to any two vertices
that are adjacent to each other differ by only one element. For every vertex (F ,G), we maintain a representation LF ,G of the
sorted list of all elements in F ∪G on their function values, and we identify (F ,G, LF ,G) as a vertex of Jf × Jg . Here, we want to
guarantee that LF ,G is uniquely determined for any pair (F ,G) in order to avoid undesirable quantum interference; we just
have to introduce some appropriate rules that break ties, i.e., the situation where there are multiple elements in F ∪ G that
have the same function value, in order to guarantee a total ordering over X ∪ Y . To mark vertices, the algorithm checks if
there exists a pair (x, y) ∈ X × Y such that f (x) = g(y) by looking through the sorted list. Thus, another property that LF ,G
should have is to make it easy to decide whether each pair of consecutive elements in the sorted list have the same function
value or not. There are many kinds of appropriate representation of LF ,G.
For instance, define a total ordering over X∪Y as follows. Let (zi, zj) ∈ (X∪Y)×(X∪Y). If zi and zj have different function

values, the one having the larger function value precedes the other, which is expressed by using ‘‘≺’’ (e.g., zi ≺ zj). If zi and zj
have the same function value, we introduce the next rule to break the tie: if (zi, zj) is in either X×Y or Y ×X , the X-element
precedes the Y -element, which is expressed by using ‘‘�’’; otherwise, the element having the smaller index within X (Y)
precedes the other, expressed by using ‘‘≈.’’ Then, LF ,G has the form z1op1 · · · opl+m−1zl+m, where i < j for i, j ∈ [1.(l+m)]
if and only if zi precedes zj, and opi ∈ {≺,�,≈} expresses the relation between zi and zi+1 for i ∈ [1.(l+m− 1)].

3.1.2. Quantum walk operations
As the state |φ0〉 in Theorem 1, we prepare

|φ0〉 =
1√(N

l

)(M
m

)
l(N − l)m(M −m)

⊗
((F ,G),(F ′,G′))∈Jf×Jg

|F ,G, LF ,G〉|F ′,G′, LF ′,G′〉,

in register R1. To generate |φ0〉, we first prepare the uniform superposition of |F ,G〉|F ′,G′〉 over all F , F ′,G,G′ such that
(F , F ′) and (G,G′) are edges of Jf and Jg , respectively. Obviously, this requires no queries. We then compute LF ,G and LF ′,G′
for each basis state by making queries.
The number 1 ≤ t ≤ c/

√
δMε of repeating W is chosen randomly and uniformly for some constant c , and δM and ε

are fixed as follows. We set ε to (l/N)× (m/M), since the probability that a vertex is marked is minimized when only one
claw exists for f and g , in which case the probability is (l/N) × (m/M). Since, from Proposition 3, the spectral gaps of the
Markov chains on J(N, l) and J(M,m) areΩ(1/l) andΩ(1/m), respectively, the spectral gap δM of the Markov chainM on
J(N, l)× J(M,m) isΩ(min{1/l, 1/m}) = Ω(1/m) due to l ≤ m and Proposition 2. Thus, c/

√
δMε = c

√
NM/l.

We next describe the implementation of operation W . We first check if there is a pair of (x, y) ∈ F × G such that
f (x) = g(y) by looking through LF ,G (without any queries). For every unmarked vertex, we apply diffusion operator 2C − I ,
which in our case is defined as 2

∑
F ,G |cF ,G〉〈cF ,G| − I,where

|cF ,G〉 :=
∑

F ′,G′:((F ,G),(F ′,G′))∈Jf×Jg

1
√
l(N − l)m(M −m)

|F ,G, LF ,G〉|F ′,G′, LF ′,G′〉.

Since diffusion operator 2C− I depends on LF ,G’s, it needs to make queries to the oracle. We thus divide operator 2C− I into
a few steps. For every unmarked vertex (F ,G, LF ,G), we next transform |F ,G, LF ,G〉|F ′,G′, LF ′,G′〉 into |F ,G, LF ,G〉|F ′,G′, LF ,G〉
with queries to the oracle. Let 2Ĉ − I be 2

∑
F ,G |ĉF ,G〉〈ĉF ,G| − I , where

|ĉF ,G〉 :=
∑

F ,G:((F ,G),(F ′,G′))∈Jf×Jg

1
√
l(N − l)m(M −m)

|F ,G〉|F ′,G′〉.

We then perform diffusion operator 2Ĉ − I on the registers where the contents ‘‘F ,G’’ and ‘‘F ′,G′’’ are stored to obtain a
superposition of |F ,G, LF ,G〉|F ′′,G′′, LF ,G〉 over all (F ′′,G′′) adjacent to (F ,G). Finally, we transform |F ,G, LF ,G〉|F ′′,G′′, LF ,G〉

5290 S. Tani / Theoretical Computer Science 410 (2009) 5285–5297

Claw_Detect

Input: IntegersM and N such thatM ≥ N .
Comparison oracle Of ,g for f : X := [N] → Z and g : Y := [M] → Z ,
Parameters 1≤ l ≤ N and 1 ≤ m ≤ M such that l ≤ m.

Output: ‘‘true’’ if there is a claw pair (x, y) ∈ X × Y such that f (x) = f (y); otherwise ‘‘false’’.

1 Prepare |0〉 in one-qubit registers R0 and Rmark and perform the next operations to prepare |φ0〉 in Theorem 1 in register
R1.
1.1 Create a uniform superposition in R1,

|φ′0〉 :=
1√(N

l

)(M
m

)
l(N − l)m(M −m)

⊗
((F ,G),(F ′,G′))∈Jf×Jg

|F ,G〉|F ′,G′〉.

1.2 Transform φ′0 into

|φ0〉 :=
1√(N

l

)(M
m

)
l(N − l)m(M −m)

⊗
((F ,G),(F ′,G′))∈Jf×Jg

|F ,G, LF ,G〉|F ′,G′, LF ′,G′〉,

with queries to the oracle.
2 Apply the Hadamard operator to R0.
3 Uniformly and randomly pick 1 ≤ t ≤ c/

√
δMε = c

√
NM/l for some constant c and perform the next operations t times.

3.1 To every |F ,G, LF ,G〉|F ′,G′, LF ′,G′〉, perform the next steps.
3.1.1 If there is a pair of (x, y) ∈ F × G such that f (x) = g(y), set the content of register Rmark to 1.
3.1.2 If the content of Rmark is 0, apply diffusion operator 2C − I .
3.1.3 Invert the computation in step 3.1.1 to disentangle Rmark.
3.2 To every |F ,G, LF ,G〉|F ′,G′, LF ′,G′〉, perform the next steps.
3.2.1 If there is a pair of (x, y) ∈ F ′ × G′ such that f (x) = g(y), set the content of register Rmark to 1.
3.2.2 If the content of Rmark is 0, apply diffusion operator 2R− I .
3.2.3 Invert the computation in step 3.2.1 to disentangle Rmark.

4 Apply the Hadamard operator to R0 and measure registers R0 and R1 with respect to the computational basis {|0〉, |1〉}.
5 If the result of measuring R0 is 1 or a marked element is found by measuring R1, output ‘‘true’’; otherwise output ‘‘false.’’

Fig. 2. Algorithm Claw_Detect.

into |F ,G, LF ,G〉|F ′′,G′′, LF ′′,G′′〉 with queries to the oracle. Fig. 1 summarizes 2C − I . Diffusion operator 2R − I is defined as
2
∑
F ′,G′ |rF ′,G′〉〈rF ′,G′ | − I , where

|rF ′,G′〉 :=
∑

F ,G:((F ,G),(F ′,G′))∈Jf×Jg

1
√
l(N − l)m(M −m)

|F ,G, LF ,G〉|F ′,G′, LF ′,G′〉.

Operator 2R − I can be implemented in a way similar to 2C − I . Fig. 2 gives a precise description of the claw detection
algorithm.

Lemma 4. Let Q (clawdetect(N,M)) be the number of queries needed to solve the claw detection problem for functions with do-
main size N and M. In the comparison oracle setting,

Q (clawdetect(N,M)) =
{
O((NM)1/3 logN) (N ≤ M < N2)
O(M1/2 logN) (M ≥ N2).

Proof. We will estimate CU , CF and CW for Claw_Detect in Fig. 2, and then apply Theorem 1.
Obviously, steps 1.1, 2, 4, and 5 need no queries. In step 1.2, each |LF ,G〉 and |LF ′,G′〉 can be computed by using a

reversible classical computation of sorting (l + m) elements with O((l + m) log(l + m)) queries to oracle Of ,g . Thus,
CU = O((l+m) log(l+m)).
Steps 3.1.1 and 3.2.1 can be performed by looking through LF ,G and LF ′,G′ , respectively. Since steps 3.1.3 and 3.2.3 are just

the inversions of steps 3.1.1 and 3.2.1, they need no queries. Thus, CF = 0.
Step 3.1.2 performs the operations described in Fig. 1. Step 2 in Fig. 1 obviously needs no queries. The other steps in

Fig. 1 can be realized by inserting and deleting O(1) elements to/from the sorted list of O(l + m) elements. Each insertion
or deletion can be performed with O(log(l + m)) queries by using reversible classical computation of binary search. Thus,
each run of step 3.1.2 needs O(log(l + m)) queries. Similarly, each run of step 3.2.2 needs O(log(l + m)) queries. Thus, we
have CW = O(log(l+m)).

S. Tani / Theoretical Computer Science 410 (2009) 5285–5297 5291

Since operationW (i.e., step 3) is repeated O(
√
NM/l) times, the total number of queries is, by Theorem 1,

Q (clawdetect(N,M)) = O

(
(l+m) log(l+m)+

√
NM
l
log(l+m)

)
.

When N ≤ M < N2, we set l = m = Θ((NM)1/3), which satisfies condition l ≤ N . The total number of queries is
O((NM)1/3 logN).WhenM ≥ N2, we set l = m = N , implying that the total number of queries is O(M1/2 logN). �

Notice that we introduce the condition l ≤ m to fix δM = min{1/l, 1/m}. This is not essential; we obtain the same bound if
we assume l ≥ m.
The standard oracle case can be handled by using almost the same approach.

Corollary 5. In the standard oracle setting,

Q (clawdetect(N,M)) =
{
O((NM)1/3) (N ≤ M < N2)
O(M1/2) (M > N2).

Proof. In the standard oracle case,we can obtain function values bymaking queries; it is better to store the obtained function
values for comparing them with other function values. We thus define LF ,G in this case as a representation of the sorted list
of all pairs of an element in F ∪ G and its function value.
The costs different from those in the case of the comparison oracle are the number of queries needed to prepare LF ,G and

LF ′,G′ in step 1.2 in Fig. 2 and the number of queries needed to perform operations 2C − I and 2R− I in step 3.
Step 1.2 can compute the sorted list of (l+m) pairs by obtaining their associated function values with O(l+m) queries

to the standard oracle. Thus, CU = O(l+m).
To realize 2C − I , we need to perform the insertion/deletion of O(1) pairs to/from an O(l + m)-pair sorted list. To

insert/delete a pair into/from the sorted list, we only need to know its associated function value; thus, each run of step 3.1.2
needs O(1) queries. Similarly, each run of step 3.2.2 needs O(1) queries. Thus, we need only CW = O(1) queries.
The total number of queries is O((l + m) +

√
NM/l). Setting l and m in the same way as in Lemma 4 completes the

proof. �

3.2. (p, q)-subset detection

The claw detection algorithm against a standard oracle can easily be modified in order to solve the problem of deciding
whether there exists a tuple with prespecified property given in the (p, q)-subset finding problem.
A modification is made to the part of the algorithm that decides whether a vertex of the underlying graph is marked

or not (i.e., steps 3.1.1 and 3.2.1 and their inversion, steps 3.1.3 and 3.2.3 in Fig. 2); the modification can be made without
changing the number of queries. The query complexity can be analyzed by using almost the same approach as used in claw
detection. When there is only one tuple with prespecified property in X × Y , the number of marked vertices is

(N−p
l−p

)(M−q
m−q

)
.

Thus, we set

ε ≥

(N−p
l−p

)(N
l

) (M−q
m−q

)(M
m

) ≥ lpmq

NpMq
(1− o(1)).

If we assume l ≤ m, the query complexity is

O

(
l+m+

√
mNpMq

lpmq

)
.

This function of l and m attains the minimum O((NpMq)1/(p+q+1)) at l = m = Θ((NpMq)1/(p+q+1)) if N ≤ M < N1+1/q,
and it attains the minimum O(Mq/(1+q)) at l = Θ(N) and m = Θ(Mq/(q+1)) ifM ≥ N1+1/q (if we assume m ≤ l, we cannot
obtain better bounds).
These bounds are summarized in the next lemma.

Lemma 6. Let Q ((p, q)-subsetdetect(N,M)) be the number of queries needed to solve (p, q)-subset detection problem for given
two functions of domain size N and M, respectively. In the standard oracle setting,

Q ((p, q)-subsetdetect(N,M)) =
{
O((NpMq)1/(p+q+1)) (N ≤ M < N1+1/q),
O(Mq/(q+1)) (M ≥ N1+1/q).

By setting p = q = 1, we obtain the query complexity of the claw detection problem given in Corollary 5.

5292 S. Tani / Theoretical Computer Science 410 (2009) 5285–5297

3.3. k-claw detection

Our algorithm for detecting a claw can easily be generalized to the case of k functions of domains of size N1, . . . ,Nk,
respectively. More concretely, we apply Theorem 1 to the Markov chain on the graph categorical product of the k Johnson
graphs, each of which corresponds to one of the k functions. We mean this k-claw detection algorithm by ‘‘k-Claw_Detect’’
in the next section.

Lemma 7. Let Q (k-clawdetect(N1, . . . ,Nk)) be the number of queries needed to solve the k-claw detection problem for any
positive constant integer k > 1. In the comparison oracle setting,

Q (k-clawdetect(N1, . . . ,Nk)) =


O

(k∏
i=1
Ni

) 1
k+1

logN1

 if
k∏
i=2
Ni = O(Nk1),

O

(√
k∏
i=2
Ni/Nk−21 logN1

)
otherwise.

Proof. In a way similar to that for two functions, we apply Theorem 1 on the graph categorical product of k Johnson graphs
Jfi := J(|Xi|, li) (i ∈ [k]) for the domains Xi’s of functions fi’s, where li’s are integers fixed later such that li ≤ lj for i < j.
To create uniform superposition |φ0〉, we first prepare the uniform superposition of |F1, . . . , Fk〉|F ′1, . . . , F

′

k〉 over all Fi
and F ′i such that (Fi, F

′

i) is an edge of Jfi for every i. This requires no queries. As in the two-function case, we define LF1,...,Fk for
any F1, . . . , Fk as a representation of the sorted list of all elements in

⋃k
i=1 Fi so that it can be uniquely determined for each

tuple (F1, . . . , Fk). We then compute LF1,...,Fk and LF ′1,...,F ′k for each basis state by making O((
∑k
i=1 li) log(

∑k
i=1 li)) queries to

the oracle. Thus, CU = O((
∑k
i=1 li) log(

∑k
i=1 li)). CF and CW can be estimated as 0 and O(

∑k
i=1 li), respectively. We set ε to∏k

i=1 li/Ni and δ to mini{1/li} = 1/lk.
From Theorem 1, the total number of queries is

Q (k-clawdetect(N1, . . . ,Nk)) = O


(

k∑
i=1

li

)
log

(
k∑
i=1

li

)
+ log

(
k∑
i=1

li

)√√√√√√√√lk
k∏
i=1
Ni

k∏
i=1
li



= O


(

k∑
i=1

li

)
log

(
k∑
i=1

li

)
+ log

(
k∑
i=1

li

)√√√√√√√√
k∏
i=1
Ni

k−1∏
i=1
li

 .
When

∏k
i=2 Ni = O(N

k
1), we set li := Θ((

∏k
i=1 Ni)

1
k+1) for i = 1, . . . , k, which satisfies condition li ≤ N1 ≤ Ni (i = 1, . . . , k).

Q (k-clawdetect(N1, . . . ,Nk)) = O

(k∏
i=1

Ni

) 1
k+1

log

(
k∏
i=1

Ni

) = O
(k∏

i=1

Ni

) 1
k+1

logN1

 .
When

∏k
i=2 Ni = ω(N

k
1), we set li := Θ(N1) for i = 1, . . . , k.

Q (k-clawdetect(N1, . . . ,Nk)) = O

√∏k
i=2 Ni
Nk−21

logN1

 . �

Notice that we introduce the condition li ≤ lj for i < j to fix δ = mini{1/li}. This is not essential; we obtain the same bound
if we assume lπ [i] ≤ lπ [j] for i < j and any permutation π over [k].
Against a standard oracle, we obtain the following result.

Corollary 8. Let Q (k-clawdetect(N1, . . . ,Nk)) be the number of queries needed to solve the k-claw detection problem for any
positive constant integer k > 1. In the standard oracle setting,

Q (k-clawdetect(N1, . . . ,Nk)) =


O

(k∏
i=1
Ni

) 1
k+1

 if
k∏
i=2
Ni = O(Nk1),

O

(√
k∏
i=2
Ni/Nk−21

)
otherwise.

S. Tani / Theoretical Computer Science 410 (2009) 5285–5297 5293

Claw_Search

Input: Integers N,M (N ≤ M).
Comparison oracle Of ,g for f : X := [N] → Z and g : Y := [M] → Z .

Output: Claw (x, y) ∈ X × Y such that f (x) = g(y) if such a pair exists; (−1,−1) otherwise.

1 Set X̃ := X and Ỹ := Y .
2 Set s := 1, and repeat the next steps until uỸ − lỸ ≤ c|X̃ | for some constant c ≥ 2, where uỸ and lỸ are the largest and
smallest values, respectively, in Ỹ .
2.1 SetΞY := {[lỸ .mỸ − 1], [mỸ .uỸ]}, wheremỸ := d(lỸ + uỸ)/2e.
2.2 For every Ỹ ′ ∈ ΞY , do the following.
2.2.1 Apply Claw_Detect (s+ 2) times to f and g restricted to domains X̃ and Ỹ , respectively.
2.2.2 If at least one of the (s+ 2) results is ‘‘true,’’ set Ỹ := Ỹ ′, and go to step 2.4.
2.3 Output (−1,−1) and halt.
2.4 Set s := s+ 1.
3 Set s := 1, and repeat the next steps until uD − lD ≤ c for every D ∈ {X̃, Ỹ } and some constant c , say, 100, where uD and
lD are the largest and smallest values, respectively, in D.
3.1 For every D ∈ {X̃, Ỹ }, setΞD := {[lD.uD]} if uD − lD ≤ c , and

otherwise, setΞD := {[lD.mD − 1], [mD.uD]}wheremD := d(lD + uD)/2e.
3.2 For every pair (X̃ ′, Ỹ ′) ∈ ΞX̃ × ΞỸ , do the following.
3.2.1 Apply Claw_Detect (s+ 3) times to f and g restricted to domains X̃ ′ and Ỹ ′, respectively.
3.2.2 If at least one of the (s+ 3) results is ‘‘true,’’ set X̃ := X̃ ′ and Ỹ := Ỹ ′, and go to step 3.4.
3.3 Output (−1,−1) and halt.
3.4 Set s := s+ 1.
4 Search X̃ × Ỹ for a claw by making classical queries.
5 Output claw (x, y) ∈ X̃ × Ỹ if it exists; otherwise output (−1,−1).

Fig. 3. Algorithm Claw_Search.

By setting k = 2, N1 = N and N2 = M in Lemma 7 and Corollary 8, we obtain the query complexity of the claw detection
problem given in Lemma 4 and Corollary 5.

4. Finding algorithms

4.1. Claw finding

Wenowdescribe an algorithm, Claw_Search, that finds a claw. The algorithm consists of three stages. In the first stage, we
find an O(N)-sized subset Y ′ of Y such that there is a claw in X × Y ′, by performing binary search over Y with Claw_Detect.
In the second stage, we perform 4-ary search over X×Y ′ with Claw_Detect to find O(1)-sized subsets X ′′ and Y ′′ of X and Y ′,
respectively, such that there is a claw in X ′′×Y ′′. In the final stage, we search X ′′×Y ′′ for a claw bymaking classical queries.
To keep the error rate moderate, say, at most 1/3, Claw_Detect is repeated O(s) times against the same pair of domains at
the node of depth s in the search tree at each stage. This pushes up the query complexity by only a constant multiplicative
factor.
Fig. 3 precisely describes Claw_Search. Steps 2, 3, and 4 in the figure correspond to the first, second, and final stages,

respectively.

Theorem 9. In the comparison oracle setting,

Q (clawfinding(N,M)) =
{
O
(
(NM)1/3 logN

)
N ≤ M < N2

O(M1/2 logN) M ≥ N2.

Proof. We will analyze Claw_Search in Fig. 3.
When there is no claw, Claw_Search always outputs the correct answer. Suppose that there is a claw. The algorithmmay

output a wrong answer if at least one of the following two cases arises. In case (1), one of O(logM/N) runs of step 2.2 errs;
in case (2), one of O(logN) runs of step 3.2 errs.
Without loss of generality, the error probability of Claw_Detect can be assumed to be at most 1/3. The error probability

of each single run of step 2.2.1 is at most 1/3s+2. The error probability of each run of step 2.2 is at most 2/3s+2 < 1/3s+1.
The error probability of case (1) is thus at most

∑dlogM/Ne
s=1 1/3s+1 < 1/6. The error probability of case (2) is also at most

5294 S. Tani / Theoretical Computer Science 410 (2009) 5285–5297∑dlogN1e
s=1 4/3s+3 <

∑dlogN1e
s=1 1/3s+1 < 1/6 by a similar calculation. Therefore, the overall error probability is at most

1/6+ 1/6 = 1/3.
We next estimate the number of queries. If N ≤ M < N2, the size of Ỹ is always at most quadratically different from

that of X̃ . Thus, the sth repetition of step 2 requires O(s(NM/2s)1/3 logN) queries by Lemma 4. Similarly, the sth repetition
of step 3 requires O(s(N/2s)2/3 log(N/2s)) queries.
The total number of queries is

O

(
dlog(M/N)e∑
s=1

(
s
(
N
M
2s

)1/3
logN

)
+

dlogNe∑
s=1

(
s
(
N
2s

)2/3
log
N
2s

))
= O

(
(NM)1/3 logN

)
.

IfM ≥ N2, the sth repetition of step 2 requiresO(s((NM/2s)1/3+(M/2s)1/2) logN) by Lemma4. Thus, a similar calculation
gives O(M1/2 logN) queries. �

We can easily obtain the standard oracle version of the above theorem by using Corollary 5 instead of Lemma 4.

Corollary 10. In the standard oracle setting,

Q (clawfinding(N,M)) =
{
O
(
(NM)1/3

)
N ≤ M < N2

O(M1/2) M ≥ N2.

4.2. (p, q)-subset finding

We describe an algorithm that solves the (p, q)-subset finding problem. Although the algorithm is similar to that for the
claw finding problem, we have to consider that multiple elements in domain X or Y are involved with any solution (i.e.,
tuple) for p > 1 or q > 1.

Theorem 11. In the standard oracle setting,

Q ((p, q)-subsetfinding(N,M)) =
{
O((NpMq)1/(p+q+1)) N ≤ M < N1+1/q,
O(Mq/(q+1)) M ≥ N1+1/q.

Proof. As in the case of the claw finding problem,we first search for a pair of constant-sized subsets of X and Y , respectively,
that contain a solution (i.e., a tuple with prespecified property) by combining r-ary search with the detection algorithm in
Section 3.2.
What we need to be concerned about is that when we partition the domain into (almost-)equal-sized sub-domains, a

tuple we search for may also be partitioned.
The first stage is to find a subset ỸO(N) of size O(N) such that there is a solution in X × ỸO(N). Suppose the following

operationA: current domain Ỹ ⊆ Y is randomly partitioned into two (almost-)equal-sized sub-domains Ỹ ′1 and Ỹ
′

2, i.e., two
sub-domains with size dỸ/2e and bỸ/2c, followed by applying the bounded-error detection algorithm to (X, Ỹ ′1) and (X, Ỹ

′

2)

in order to know in which of X × Ỹ ′1 and X × Ỹ
′

2 a solution exists (if there exists a solution in one of them). Operation A

can find a random subset Ỹ ′ ⊆ Ỹ with size of almost |Ỹ |/2 such that there is a solution in X × Ỹ ′ with at least constant
probability (if there exists a solution in X × Ỹ) because of the following claim, which will be proved later.

Claim 1. If there is a tuple (x1, . . . , xp, y1, . . . , yq)with prespecified property in X × Ỹ , the probability Pr(|Ỹ |) that (y1, . . . , yq)
is a subset of one of Ỹ ′1 and Ỹ

′

2 is at least some constant.

By repeatingA O(1) times, we can find such a tuple with probability at least 2/3, i.e., with error probability at most 1/3. Let
procedure B be these O(1) repetitions of A. We then combine B with r-ary search to find a subset ỸO(N) ⊆ Y with error
probability at most 1/6 in a way similar to the case of the claw finding problem. This is the end of the first stage.
The second stage is to find constant-sized sub-domains X̃O(1) ⊆ X and ỸO(1) ⊆ ỸO(N) such that X̃O(1) × ỸO(1) contains a

solution by performing r-ary search over X and ỸO(N). At the node of depth s in the search tree, the following operation is
performedO(s) times: current domain X̃ ⊆ X is randomly partitioned into (almost-)equal-sized sub-domains X̃ ′1 and X̃

′

2, and
Ỹ ⊆ ỸO(N) into (almost-)equal-sized sub-domains Ỹ ′1 and Ỹ

′

2, followed by applying the bounded-error detection algorithm
to sub-domain pair (X̃ ′a, Ỹ

′

b) for every a, b ∈ {1, 2}. We can thus find X̃O(1) and ỸO(1) with error probability at most 1/6 by the
same argument as the first stage and the next claim:

Claim 2. Suppose that there is a tuple (x1, . . . , xp, y1, . . . , yq) with prespecified property in X̃ × Ỹ . Let Pr(|X̃ |, |Ỹ |) be the prob-
ability that (x1, . . . , xp) is a subset of one of X̃ ′1 and X̃

′

2, and (y1, . . . , yq) is a subset of one of Ỹ
′

1 and Ỹ
′

2. Then, Pr(|X̃ |, |Ỹ |) is at
least some constant.

S. Tani / Theoretical Computer Science 410 (2009) 5285–5297 5295

Therefore, the error probability is at most 1/6+ 1/6 = 1/3 in total.
We can calculate the query complexity in a way similar to the claw finding algorithm. If N ≤ M < N1+1/q, the total

number of queries is, by Lemma 6,

O

dlog(M/N)e∑
s=1

s(Np (M
2s

)q) 1
p+q+1

+ dlogNe∑
s=1

(
s
(
N
2s

) p+q
p+q+1

) = O ((NpMq) 1
p+q+1

)
.

If M ≥ N1+1/q, O(s((Np(M/2s)q)
1

p+q+1 + (M/2s)
q
q+1)) queries are made at the node of depth s in the search tree at the

first stage. Thus, a similar calculation gives O(Mq/(q+1)) queries.
We now prove Claim 1. Let S := |Ỹ |. Probability Pr(S) is at least

(S−q
dS/2e

)
+
(S
dS/2e−q

)(S
dS/2e

) ≥ 2

(S−q
dS/2e

)(S
dS/2e

)
≥ 2

(S − q) . . . (S − q− dS/2e + 1)
S(S − 1) . . . (S − dS/2e + 1)

> 2(1− 2q/S))dS/2e ≥ 2e
−(S+2)q
S−2q .

Here we use (S− q− k)/(S− k) = 1− q/(S− k) > 1− 2q/S for 0 ≤ k ≤ dS/2e− 1 and 1− x ≥ e
−x
1−x for x > −1. Since

e
−(S+2)q
S−2q is a monotone-increasing function of S, Pr(S) is at least 2e−(3q+2) for S ≥ 3q. For S < 3q, Pr(S) is obviously constant.
As for Claim 2, let SX := |X̃ | and SY := |Ỹ |. Probability Pr(SX , SY) is at least

4

(SX−p
dSX /2e

)(SX
dSX /2e

) (SY−qdSY /2e

)(SY
dSY /2e

) .
By the same argument as in the proof of Claim 1, Pr(SX , SY) is at least some constant. �

4.3. k-claw finding

Similarly, we can find a k-claw by using k-Claw_Detect as a subroutine. First, we find O(N1)-sized subset X ′i of Xi for every
i ∈ [2.k] such that there is a k-claw in X1 × X ′2 × · · · × X

′

k, by performing 2
k−1-ary search over X ′i ’s for all i ∈ [2.k] with

k-Claw_Detect. Let X ′1 := X1. We then perform 2
k-ary search over X ′i s for all i ∈ [k] with k-Claw_Detect to find O(1)-sized

subset X ′′i of X
′

i for every i ∈ [k] such that there is a k-claw in X
′′

1 × · · · × X
′′

k . Finally, we search X
′′

1 × · · · × X
′′

k for a k-claw
by making classical queries. A more precise description of the algorithm, k-Claw_Search, is given in Fig. 4.

Theorem 12. Let Q (k-clawfinding(N1, . . . ,Nk)) be the number of queries needed to solve the k-claw finding problem for any
positive constant integer k > 1. In the comparison oracle setting,

Q (k-clawfinding(N1, . . . ,Nk)) =


O

(k∏
i=1
Ni

) 1
k+1

logN1

 if
k∏
i=2
Ni = O(Nk1),

O

(√
k∏
i=2
Ni/Nk−21 logN1

)
otherwise.

Proof. When there is no claw, the algorithmalways outputs the correct answer. This is because the clawdetection algorithm
works with one-sided error. Suppose that there is a claw. The algorithm may output a wrong answer if at least one of the
following cases arises: case (1) one of O(logNk/N1) runs of step 2.2 errs; case (2) one of O(logN1) runs of step 3.2 errs.
Without loss of generality, the error probability of k-Claw_Detect can be assumed to be atmost 1/3. The error probability,

i.e., the probability of deciding that there is no claw, of each single run of steps 2.2.1 and 2.2.2 is at most 1

3(s+1)+dlog3 2
k−1e
. The

error probability of each run of step 2.2 is at most 2k−1

3(s+1)+dlog3 2
k−1e
≤

1
3s+1
, since the number of tuples is at most 2k−1 for each

run of step 2.2. The error probability of case (1) is thus at most
∑dlogNk/N1e
s=1

1
3s+1

< 1
6 . The error probability of case (2) is also

at most
∑dlogN1e
s=1

1
3s+1

< 1
6 by similar calculation. Therefore, the overall error probability is at most 1/6+ 1/6 = 1/3.

The number of queries is estimated as follows. At the sth repetition of step 2, the domain of fi has size of O(N1 + Ni/2s).
Thus, if

∏k
i=2 Ni = O(N

k
1), the number of queries made by the sth repetition of step 2 is, by Lemma 7,

O

2k−1((s+ 1)+ dlog3 2k−1e)
(
k∏
i=1

(N1 + Ni/2s)

) 1
k+1

logN1

 = O
s(1

2s

k∏
i=1

Ni

) 1
k+1

logN1

 .

5296 S. Tani / Theoretical Computer Science 410 (2009) 5285–5297

k-Claw_Search

Input: k integers N1, . . . ,Nk such that Ni ≤ Nj if i < j.
Comparison oracle Of1,...,fk for functions fi : Xi := [Ni] → Z (i ∈ [k]).

Output: k-claw (x1, . . . , xk) ∈ X1× · · ·× Xk such that fi(xi) = fj(xj) for every i, j ∈ [k] if it exists; (−1, . . . ,−1) otherwise.

1 Set X̃i := Xi for every i ∈ [k].
2 Set s := 1, and repeat the next steps until ui− li ≤ |X̃1| for all i ∈ [2.k], where ui and li are the largest and smallest values,
respectively, in X̃i.
2.1 For every i ∈ [2.k], setΞi := {[li.ui]} if ui − li ≤ |X̃1|, and

otherwise, setΞi := {[li.mi − 1], [mi.ui]}wheremi := d(li + ui)/2e.
2.2 For every tuple (X̃ ′1, X̃

′

2, . . . , X̃
′

k) ∈ {X̃1} × Ξ2 × · · · × Ξk, do the following for β := (s+ 1)+ dlog3 2
k−1
e.

2.2.1 Apply k-Claw_Detect β times to the k functions fi restricted to domains X̃ ′i , respectively, for every i ∈ [k].
2.2.2 If at least one of the β results is ‘‘true,’’ set X̃i := X̃ ′i for every i ∈ [2.k], and go to step 2.4.
2.3 Output (−1, . . . ,−1) and halt.
2.4 Set s := s+ 1.
3 Set s := 1, and repeat the next steps until ui − li ≤ c for all i ∈ [k] and some constant c , say, 100, where ui and li are the
largest and smallest values, respectively, in X̃i.
3.1 For every i ∈ [k], setΞi := {[li.ui]} if ui − li ≤ c , and

otherwise, setΞi := {[li.mi − 1], [mi.ui]}wheremi = d(li + ui)/2e.
3.2 For every tuple (X̃ ′1, X̃

′

2, . . . , X̃
′

k) ∈ Ξ1 × · · · × Ξk, do the following for γ := (s+ 1)+ dlog3 2
k
e.

3.2.1 Apply k-Claw_Detect γ times to the k functions fi restricted to domains X̃ ′i for every i ∈ [k].
3.2.2 If at least one of the γ results is ‘‘true,’’ set X̃i := X̃ ′i for every i ∈ [k], and go to 3.4.
3.3 Output (−1, . . . ,−1) and halt.
3.4 Set s := s+ 1.
4 Search X̃1 × · · · × X̃k for a k-claw by making classical queries.
5 Output k-claw (x1, . . . , xk) ∈ X ′1 × · · · × X

′

k if it exists; otherwise output (−1, . . . ,−1).

Fig. 4. Algorithm k-Claw_Search.

Similarly, the number of queries made by the sth repetition of step 3 is, by Lemma 7,

O

(
2k((s+ 1)+ dlog3 2

k
e)

((
N1
2s

) k
k+1

log
(
N1
2s

)))
= O

s(Nk1
2s

) 1
k+1

logN1

 .
The total number of queries is

O

dlog(Nk/N1)e∑
s=1

s

(
1
2s

k∏
i=1

Ni

) 1
k+1

logN1 +
dlogN1e∑
s=1

s
(
Nk1
2s

) 1
k+1

logN1

 .
This can be simplified as O

((∏k
i=1 Ni

) 1
k+1
logN1

)
.

If
∏k
i=2 Ni = ω(N

k
1), the number of queries made by the sth repetition of step 2 is, by Lemma 7,

O

2k−1((s+ 1)+ dlog3 2k−1e)

√√√√√√

k∏
i=2
(N1 + Ni/2s)

Nk−21

+

(
k∏
i=1

(N1 + Ni/2s)

) 1
k+1

 logN1


= O

s
√√√√√√ 1
2s

k∏
i=2
Ni

Nk−21

logN1 + s

(
1
2s

k∏
i=1

Ni

) 1
k+1

logN1

 .

S. Tani / Theoretical Computer Science 410 (2009) 5285–5297 5297

Thus, the total number of queries is

O


dlog(Nk/N1)e∑

s=1

s
√√√√√√ 1
2s

k∏
i=2
Ni

Nk−21

+ s

(
1
2s

k∏
i=1

Ni

) 1
k+1

 logN1 +
dlogN1e∑
s=1

s
(
Nk1
2s

) 1
k+1

logN1

 .

This can be simplified as O
(√∏k

i=2 Ni/N
k−2
1 logN1

)
by using

∏k
i=2 Ni = ω(N

k
1). �

We can easily obtain the standard oracle version of the above theorem by using Corollary 8 instead of Lemma 7.
Corollary 13. In the standard oracle setting,

Q (k-clawfinding(N1, . . . ,Nk)) =


O

(k∏
i=1
Ni

) 1
k+1

 if
k∏
i=2
Ni = O(Nk1),

O

(√
k∏
i=2
Ni/Nk−21

)
otherwise.

5. Conclusion

This paper addressed an optimal quantum algorithm that solves the claw finding problem. Our algorithm uses Szegedy’s
quantumwalk,which can directly handle the caseswhere theremay bemultiple solutions but can only decidewhether there
exists at least one solution. To find a solution, our algorithm combines the quantum walk with carefully adjusted classical
r-ary search, which adds a constant multiplicative factor to the query complexity of the quantum walk. Our algorithm
can be applied to more general problems, i.e., the (p, q)-subset finding problem and k-claw finding problem, with slight
modification or generalization. The space complexity of our algorithms can be improved by decreasing the sizes of the
subsets associated with vertices of the Johnson graphs that correspond to given functions. However, this increases the
query complexity a lot. An open problem is how to improve the space complexity without increasing the order of the query
complexity as in the case of the element distinctness problem [2].

Acknowledgments

I would like to thank several referees of MFCS’07 for their useful comments.

References

[1] S. Aaronson, Y. Shi, Quantum lower bounds for the collision and the element distinctness problems, J. ACM 51 (4) (2004) 595–605.
[2] A. Ambainis, Quantum walk algorithm for element distinctness, SIAM J. Comput. 37 (1) (2007) 21–239.
[3] G. Brassard, P. Høyer, M. Mosca, A. Tapp, Quantum amplitude amplification and estimation, in: Quantum Computation and Quantum Information: A
Millennium Volume, in: AMS Contem. Math., vol. 305, American Mathematical Society, 2002, pp. 53–74.

[4] G. Brassard, P. Høyer, A. Tapp, Quantum cryptanalysis of hash and claw-free functions, in: C.L. Lucchesi, A.V. Moura (Eds.), Proceedings of the Third
Latin American Symposium on Theoretical Informatics, LATIN’98, in: Lecture Notes in Computer Science, vol. 1380, Springer, 1998.

[5] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, in: A series of Modern Surveys in Mathematics, Springer-Verlag, 1989.
[6] H. Buhrman, C. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, R. de Wolf, Quantum algorithms for element distinctness, in: Proceedngs of the
Sixteenth Annual IEEE Conference on Computational Complexity, 2001.

[7] H. Buhrman, C. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, R. de Wolf, Quantum algorithms for element distinctness, SIAM J. Comput. 34 (6)
(2005) 1324–1330.

[8] H. Buhrman, R. Špalek, Quantum verification of matrix products, in: Proceedings of the Seventeenth Annual ACM/SIAM Symposium on Discrete
Algorithms SODA’06, 2006.

[9] A.M. Childs, J.M. Eisenberg, Quantum algorithms for subset finding, Quantum Inf. Comput. 5 (7) (2005) 593–604.
[10] C. Dürr, M. Heiligman, P. Høyer, M. Mhalla, Quantum query complexity of some graph problems, SIAM J. Comput. 35 (6) (2006) 1310–1328.
[11] L.K. Grover, A fast quantum mechanical algorithm for database search, in: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of

Computing, 1996.
[12] P. Høyer, M. Mosca, R. de Wolf, Quantum search on bounded-error inputs, in: Proceedings of the Thirtieth International Colloquium on Automata,

Languages and Programming, in: Lecture Notes in Computer Science, vol. 2719, Springer, 2003.
[13] A.Y. Kitaev, A.H. Shen,M.N. Vyalyi, Classical and QuantumComputation, in: Graduate Studies inMathematics, vol. 47, AmericanMathematical Society,

2002.
[14] F. Magniez, A. Nayak, J. Roland, M. Santha, Search via quantum walk, in: D.S. Johnson, U. Feige (Eds.), Proceedings of the Thirty-Nineth Annual ACM

Symposium on Theory of Computing, ACM, 2007.
[15] F. Magniez, M. Santha, M. Szegedy, Quantum algorithms for the triangle problem, SIAM J. Comput. 37 (2) (2007) 413–424.
[16] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000.
[17] P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26 (5) (1997)

1484–1509.
[18] M. Szegedy, Quantum speed-up of markov chain based algorithms, in: Proceedings of the Forty-Fifth IEEE Symposium on Foundations of Computer

Science, IEEE Computer Society, 2004.
[19] S. Zhang, Promised and distributed quantum search, in: Proceedings of the Eleventh Annual International Conference on Computing and

Combinatorics, COCOON’05, in: Lecture Notes in Computer Science, vol. 3595, Springer, 2005.

	Claw finding algorithms using quantum walk
	Introduction
	Preliminaries
	Detection algorithms
	Claw detection
	Markov chain
	Quantum walk operations

	(p,q)-subset detection
	k-claw detection

	Finding algorithms
	Claw finding
	(p,q)-subset finding
	k-claw finding

	Conclusion
	Acknowledgments
	References

