15,721 research outputs found

    Non-classical correlations between a C-band telecom photon and a stored spin-wave

    Get PDF
    Future ground-based quantum information networks will likely use single photons transmitted through optical fibers to entangle individual network nodes. To extend communication distances and overcome limitations due to photon absorption in fibers the concept of quantum repeaters has been proposed. For that purpose, it is required to achieve quantum correlations between the material nodes and photons at telecom wavelengths which can be sent over long distances in optical fibers. Here we demonstrate non-classical correlation between a frequency converted telecom C-band photon and a spin-wave stored in an atomic ensemble quantum memory. The photons emitted from the ensemble and heralding the spin-waves are converted from 780 nm to 1552 nm by means of an all-solid-state integrated waveguide non-linear device. We show ultra-low noise operation of the device enabling a high signal to noise ratio of the converted single photon, leading to a high spin-wave heralding efficiency. The presented work is an enabling step towards the practical entanglement of remote quantum memories and the entanglement of quantum systems operating at different wavelengths.Comment: 9 pages, 5 figure

    Long-lived non-classical correlations for scalable quantum repeaters at room temperature

    Get PDF
    Heralded single-photon sources with on-demand readout are promising candidates for quantum repeaters enabling long-distance quantum communication. The need for scalability of such systems requires simple experimental solutions, thus favouring room-temperature systems. For quantum repeater applications, long delays between heralding and single-photon readout are crucial. Until now, this has been prevented in room-temperature atomic systems by fast decoherence due to thermal motion. Here we demonstrate efficient heralding and readout of single collective excitations created in warm caesium vapour. Using the principle of motional averaging we achieve a collective excitation lifetime of 0.27±0.040.27\pm 0.04 ms, two orders of magnitude larger than previously achieved for single excitations in room-temperature sources. We experimentally verify non-classicality of the light-matter correlations by observing a violation of the Cauchy-Schwarz inequality with R=1.4±0.1>1R=1.4\pm 0.1>1. Through spectral and temporal analysis we identify intrinsic four-wave mixing noise as the main contribution compromising single-photon operation of the source.Comment: 21 pages total, the first 17 pages are the main article and the remaining pages are supplemental materia

    Narrowband frequency tunable light source of continuous quadrature entanglement

    Full text link
    We report the observation of non-classical quantum correlations of continuous light variables from a novel type of source. It is a frequency non-degenerate optical parametric oscillator below threshold, where signal and idler fields are separated by 740MHz corresponding to two free spectrum ranges of the parametric oscillator cavity. The degree of entanglement observed, - 3.8 dB, is the highest to-date for a narrowband tunable source suitable for atomic quantum memory and other applications in atomic physics. Finally we use the latter to visualize the Einstein-Podolsky-Rosen paradox.Comment: 11 pages, 9 figures, LaTe

    Quantum Storage of Photonic Entanglement in a Crystal

    Full text link
    Entanglement is the fundamental characteristic of quantum physics. Large experimental efforts are devoted to harness entanglement between various physical systems. In particular, entanglement between light and material systems is interesting due to their prospective roles as "flying" and stationary qubits in future quantum information technologies, such as quantum repeaters and quantum networks. Here we report the first demonstration of entanglement between a photon at telecommunication wavelength and a single collective atomic excitation stored in a crystal. One photon from an energy-time entangled pair is mapped onto a crystal and then released into a well-defined spatial mode after a predetermined storage time. The other photon is at telecommunication wavelength and is sent directly through a 50 m fiber link to an analyzer. Successful transfer of entanglement to the crystal and back is proven by a violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality by almost three standard deviations (S=2.64+/-0.23). These results represent an important step towards quantum communication technologies based on solid-state devices. In particular, our resources pave the way for building efficient multiplexed quantum repeaters for long-distance quantum networks.Comment: 5 pages, 3 figures + supplementary information; fixed typo in ref. [36

    Multi-mode and long-lived quantum correlations between photons and spins in a crystal

    Full text link
    The realization of quantum networks and quantum repeaters remains an outstanding challenge in quantum communication. These rely on entanglement of remote matter systems, which in turn requires creation of quantum correlations between a single photon and a matter system. A practical way to establish such correlations is via spontaneous Raman scattering in atomic ensembles, known as the DLCZ scheme. However, time multiplexing is inherently difficult using this method, which leads to low communication rates even in theory. Moreover, it is desirable to find solid-state ensembles where such matter-photon correlations could be generated. Here we demonstrate quantum correlations between a single photon and a spin excitation in up to 12 temporal modes, in a 151^{151}Eu3+^{3+} doped Y2_2SiO5_5 crystal, using a novel DLCZ approach that is inherently multimode. After a storage time of 1 ms, the spin excitation is converted into a second photon. The quantum correlation of the generated photon pair is verified by violating a Cauchy - Schwarz inequality. Our results show that solid-state rare-earth crystals could be used to generate remote multi-mode entanglement, an important resource for future quantum networks
    • …
    corecore