8 research outputs found

    Quantum nondemolition detection of a propagating microwave photon

    Get PDF
    The ability to nondestructively detect the presence of a single, traveling photon has been a long-standing goal in optics, with applications in quantum information and measurement. Realising such a detector is complicated by the fact that photon-photon interactions are typically very weak. At microwave frequencies, very strong effective photon-photon interactions in a waveguide have recently been demonstrated. Here we show how this type of interaction can be used to realize a quantum nondemolition measurement of a single propagating microwave photon. The scheme we propose uses a chain of solid-state 3-level systems (transmons), cascaded through circulators which suppress photon backscattering. Our theoretical analysis shows that microwave-photon detection with fidelity around 90% can be realized with existing technologies

    Quantum trajectories for propagating Fock states

    Get PDF
    We derive quantum trajectories (also known as stochastic master equations) that describe an arbitrary quantum system probed by a propagating wave packet of light prepared in a continuous-mode Fock state. We consider three detection schemes of the output light: photon counting, homodyne detection, and heterodyne detection. We generalize to input field states that are superpositions and or mixtures of Fock states and illustrate the formalism with several examples.Comment: 20 pages, 4 figure

    Quantum master equation and filter for systems driven by fields in a single photon state

    No full text
    The aim of this paper is to determine quantum master and filter equations for systems coupled to continuous-mode single photon fields. The system and field are described using a quantum stochastic unitary model, where the continuous-mode single photon state for the field is determined by a wavepacket pulse shape. The master equation is derived from this model and is given in terms of a system of coupled equations. The output field carries information about the system from the scattered photon, and is continuously monitored. The quantum filter is determined with the aid of an embedding of the system into a larger system, and is given by a system of coupled stochastic differential equations. An example is provided to illustrate the main results.Comment: 7 pages, 2 figures. Accepted for publication in the joint 50th IEEE Conference on Decision and Control (CDC) and European Control Conference (ECC), 2011 (http://control.disp.uniroma2.it/cdcecc2011/
    corecore