43,504 research outputs found

    Quantum Query Complexity of Multilinear Identity Testing

    Get PDF
    Motivated by the quantum algorithm in \cite{MN05} for testing commutativity of black-box groups, we study the following problem: Given a black-box finite ring R=∠r1,...,rkR=\angle{r_1,...,r_k} where {r1,r2,...,rk}\{r_1,r_2,...,r_k\} is an additive generating set for RR and a multilinear polynomial f(x1,...,xm)f(x_1,...,x_m) over RR also accessed as a black-box function f:Rm→Rf:R^m\to R (where we allow the indeterminates x1,...,xmx_1,...,x_m to be commuting or noncommuting), we study the problem of testing if ff is an \emph{identity} for the ring RR. More precisely, the problem is to test if f(a1,a2,...,am)=0f(a_1,a_2,...,a_m)=0 for all ai∈Ra_i\in R. We give a quantum algorithm with query complexity O(m(1+α)m/2kmm+1)O(m(1+\alpha)^{m/2} k^{\frac{m}{m+1}}) assuming k≥(1+1/α)m+1k\geq (1+1/\alpha)^{m+1}. Towards a lower bound, we also discuss a reduction from a version of mm-collision to this problem. We also observe a randomized test with query complexity 4mmk4^mmk and constant success probability and a deterministic test with kmk^m query complexity.Comment: 12 page

    Unified theory of bound and scattering molecular Rydberg states as quantum maps

    Full text link
    Using a representation of multichannel quantum defect theory in terms of a quantum Poincar\'e map for bound Rydberg molecules, we apply Jung's scattering map to derive a generalized quantum map, that includes the continuum. We show, that this representation not only simplifies the understanding of the method, but moreover produces considerable numerical advantages. Finally we show under what circumstances the usual semi-classical approximations yield satisfactory results. In particular we see that singularities that cause problems in semi-classics are irrelevant to the quantum map
    • …
    corecore