22 research outputs found

    Quantum Interactive Proofs with Competing Provers

    Full text link
    This paper studies quantum refereed games, which are quantum interactive proof systems with two competing provers: one that tries to convince the verifier to accept and the other that tries to convince the verifier to reject. We prove that every language having an ordinary quantum interactive proof system also has a quantum refereed game in which the verifier exchanges just one round of messages with each prover. A key part of our proof is the fact that there exists a single quantum measurement that reliably distinguishes between mixed states chosen arbitrarily from disjoint convex sets having large minimal trace distance from one another. We also show how to reduce the probability of error for some classes of quantum refereed games.Comment: 13 pages, to appear in STACS 200

    Toward a general theory of quantum games

    Full text link
    We study properties of quantum strategies, which are complete specifications of a given party's actions in any multiple-round interaction involving the exchange of quantum information with one or more other parties. In particular, we focus on a representation of quantum strategies that generalizes the Choi-Jamio{\l}kowski representation of quantum operations. This new representation associates with each strategy a positive semidefinite operator acting only on the tensor product of its input and output spaces. Various facts about such representations are established, and two applications are discussed: the first is a new and conceptually simple proof of Kitaev's lower bound for strong coin-flipping, and the second is a proof of the exact characterization QRG = EXP of the class of problems having quantum refereed games.Comment: 23 pages, 12pt font, single-column compilation of STOC 2007 final versio

    Parallel approximation of non-interactive zero-sum quantum games

    Full text link
    This paper studies a simple class of zero-sum games played by two competing quantum players: each player sends a mixed quantum state to a referee, who performs a joint measurement on the two states to determine the players' payoffs. We prove that an equilibrium point of any such game can be approximated by means of an efficient parallel algorithm, which implies that one-turn quantum refereed games, wherein the referee is specified by a quantum circuit, can be simulated in polynomial space.Comment: 18 page

    Dequantizing read-once quantum formulas

    Get PDF
    Quantum formulas, defined by Yao [FOCS '93], are the quantum analogs of classical formulas, i.e., classical circuits in which all gates have fanout one. We show that any read-once quantum formula over a gate set that contains all single-qubit gates is equivalent to a read-once classical formula of the same size and depth over an analogous classical gate set. For example, any read-once quantum formula over Toffoli and single-qubit gates is equivalent to a read-once classical formula over Toffoli and NOT gates. We then show that the equivalence does not hold if the read-once restriction is removed. To show the power of quantum formulas without the read-once restriction, we define a new model of computation called the one-qubit model and show that it can compute all boolean functions. This model may also be of independent interest.Comment: 14 pages, 8 figures, to appear in proceedings of TQC 201

    Quantum Arthur-Merlin Games

    Get PDF
    This paper studies quantum Arthur-Merlin games, which are Arthur-Merlin games in which Arthur and Merlin can perform quantum computations and Merlin can send Arthur quantum information. As in the classical case, messages from Arthur to Merlin are restricted to be strings of uniformly generated random bits. It is proved that for one-message quantum Arthur-Merlin games, which correspond to the complexity class QMA, completeness and soundness errors can be reduced exponentially without increasing the length of Merlin's message. Previous constructions for reducing error required a polynomial increase in the length of Merlin's message. Applications of this fact include a proof that logarithmic length quantum certificates yield no increase in power over BQP and a simple proof that QMA is contained in PP. Other facts that are proved include the equivalence of three (or more) message quantum Arthur-Merlin games with ordinary quantum interactive proof systems and some basic properties concerning two-message quantum Arthur-Merlin games.Comment: 22 page
    corecore